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Preface 

The advent of Transformer networks has not merely advanced the field of artificial 
intelligence; it has redefined the landscape entirely. As the current state-of-the-art 
across various domains—including natural language processing, computer vision, 
time series forecasting, and signal analysis—Transformers have demonstrated an 
unparalleled ability to model complex patterns, understand intricate relationships, 
and deliver breakthrough performance. The self-attention mechanism at the heart of 
these models allows them to capture dependencies within data in ways that traditional 
architectures could never achieve, making Transformers the backbone of modern AI 
research and applications. 

Despite the widespread adoption and success of Transformers, much of the liter-
ature remains focused on their practical implementation, often overlooking the deep 
mathematical structures that enable their effectiveness. This gap presents a significant 
opportunity for researchers and practitioners alike. Understanding the mathematical 
foundations of Transformers is essential for those who seek to push the boundaries 
of what these models can achieve. A solid mathematical understanding equips us to 
innovate, optimize, and potentially discover the next generation of models that will 
build on the success of Transformers. 

The Geometry of Intelligence: Foundations of Transformer Networks in Deep 
Learning is crafted for those who wish to explore the profound theoretical underpin-
nings of Transformer networks. This book is intended for researchers, academics, 
and advanced practitioners who aspire to grasp the elegant mathematical principles 
that make Transformers work. By focusing exclusively on the theoretical aspects, 
we aim to provide readers with a deep and thorough understanding of the geometry, 
symmetry, and intelligence encoded within these models, without the distractions of 
implementation details, for which a plethora of resources already exist. 

The structure of this book reflects our commitment to a comprehensive and 
rigorous exploration of the mathematics of Transformers. We begin with essen-
tial mathematical preliminaries before delving into detailed, domain-specific explo-
rations of how Transformers operate in various abstract spaces. Each chapter is 
designed to present the mathematical formulations, theoretical insights, and anal-
yses that reveal the true power and potential of Transformer models. The pursuit of a
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mathematical understanding of Transformers is more than an intellectual endeavor; 
it is a journey toward the future of artificial intelligence. By uncovering the principles 
that drive their success, we open the door to new possibilities and innovations that 
can extend the capabilities of these models even further. We hope this book serves 
as a valuable resource on your path to mastering the intricate and fascinating world 
of Transformers. 

Roorkee, India 
August 2024 

Pradeep Singh 
Balasubramanian Raman
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Chapter 1 
Foundations of Representation Theory 
in Transformers 

1.1 Introduction 

The study of transformers, particularly in the context of natural language process-
ing and machine learning, has revolutionized the way we understand and process 
data. The central theme of this revolution is the concept of representation: how data, 
whether it be words in a sentence, pixels in an image, or nodes in a graph, is trans-
formed into a mathematical structure that a machine can manipulate. Understanding 
this process from a mathematical perspective requires us to delve into the theory of 
vector spaces and linear algebra, which form the backbone of representation theory. 

In transformer models, data is represented as vectors in high-dimensional spaces. 
These vectors capture not only the intrinsic properties of the data but also the relation-
ships and interactions between different data points. The operations performed on 
these vectors, such as attention mechanisms and linear transformations, rely heavily 
on the principles of vector spaces. Therefore, a deep understanding of vector spaces, 
subspaces, and bases is essential for comprehending how transformers encode and 
manipulate information. Moreover, transformers leverage the concept of symmetry— 
a principle deeply rooted in group theory and representation theory. Symmetry allows 
us to understand how certain transformations, such as rotations or translations, affect 
the data representations. By exploring these symmetries within the framework of 
vector spaces, we can gain insights into the invariances and equivariances that make 
transformer models so powerful. 

This chapter serves as a foundation for the mathematical framework that underpins 
transformers. We begin by introducing the fundamental concepts of vector spaces 
and linear algebra. These concepts will not only provide the necessary tools to ana-
lyze and understand transformer models but will also reveal the deep connections 
between geometry, symmetry, and intelligence. As we progress, we will see how the 
abstract mathematical notions introduced here manifest in the practical operations of 
transformers, setting the stage for more advanced topics in later chapters. Through 
mathematical exploration, we aim to build an intuition for how transformers operate, 
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grounded in the precise language of vector spaces and their transformations. This 
will enable us to appreciate the elegance and power of transformers from a purely 
mathematical standpoint, where the focus is not on implementation or code, but on 
the underlying mathematical structures that drive these models. 

1.1.1 Vector Spaces 

A vector space (also called a linear space) is a fundamental concept in mathematics 
that encapsulates the notions of addition and scalar multiplication. Formally, a vector 
space.V over a field. F (such as. R or. C) is a set equipped with two operations: vector 
addition and scalar multiplication. These operations satisfy the following axioms: 

1. Closure under addition: For all .u, v ∈ V ,  the  su  m .u + v ∈ V . 
2. Associativity of addition: For all .u, v,w ∈ V , .(u + v) + w = u + (v + w). 
3. Existence of additive identity: There exists an element.0 ∈ V such that. v + 0 = v

for all .v ∈ V . 
4. Existence of additive inverses: For each.v ∈ V , there exists an element . −v ∈ V

such that .v + (−v) = 0. 
5. Commutativity of addition: For all .u, v ∈ V , .u + v = v + u. 
6. Closure under scalar multiplication: For all .α ∈ F and .v ∈ V , .αv ∈ V . 
7. Distributivity of scalar multiplication with respect to vector addition: For all 

.α ∈ F and .u, v ∈ V , .α(u + v) = αu + αv. 
8. Distributivity of scalar multiplication with respect to scalar addition: For all 

.α, β ∈ F and .v ∈ V , .(α + β)v = αv + βv. 
9. Associativity of scalar multiplication: For all .α, β ∈ F and .v ∈ V , . α(βv) =

(αβ)v. 
10. Existence of multiplicative identity: For every .v ∈ V , .1 · v = v, where . 1 is the 

multiplicative identity in . F. 

These axioms ensure that vector spaces generalize the concept of Euclidean spaces 
to potentially infinite dimensions and to fields other than . R. For instance, the space 
.R

n of all.n-tuples of real numbers forms a vector space over. R, where vector addition 
and scalar multiplication are defined component-wise. Another important example 
is the space of all continuous functions from. R to. R, denoted.C(R,R), which is also 
a vector space under pointwise addition and scalar multiplication. 

Vector spaces provide the language for expressing geometric and algebraic prop-
erties in a unified way. They serve as the foundation for many areas of mathematics, 
including the theory of linear transformations, which plays a crucial role in under-
standing the architecture of transformers in deep learning (see Fig. 1.1). The concepts 
of symmetry and invariance, which are central to representation theory, are naturally 
expressed in terms of vector spaces and their linear transformations.
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Fig. 1.1 A simple network of neurons illustrating the flow of data through layers represented as 
vector spaces, highlighting the role of linear transformations in capturing geometric and algebraic 
properties essential for deep learning 

Subspaces and Bases 

A subspace.W of a vector space.V is a subset of .V that is itself a vector space under 
the operations of addition and scalar multiplication inherited from . V . Formally, a 
subset .W ⊆ V is a subspace if it satisfies the following conditions: 

1. The zero vector of .V is in . W , i.e., .0 ∈ W . 
2. .W is closed under addition: For all .u, v ∈ W , .u + v ∈ W . 
3. .W is closed under scalar multiplication: For all .α ∈ F and .v ∈ W , .αv ∈ W . 

The concept of a subspace is crucial in many areas of mathematics, particularly in 
linear algebra and geometry. For example, the set of all solutions to a homogeneous 
system of linear equations is a subspace of.Rn . This subspace, known as the solution 
space or null space, encapsulates the degrees of freedom within the system. 

A basis of a vector space. V is a set of vectors.{v1, v2, . . . , vn} in. V that is linearly 
independent and spans . V . A set of vectors is said to be linearly independent if no 
vector in the set can be expressed as a linear combination of the others. The span 
of a set of vectors is the set of all possible linear combinations of those vectors. 
Mathematically, a set .{v1, v2, . . . , vn} is a basis for .V if:
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1. The vectors are linearly independent: .
∑n

i=1 αivi = 0 implies .αi = 0 for all . i . 
2. The vectors span. V : For every.v ∈ V , there exist scalars.α1, α2, . . . , αn such that 

.v = ∑n
i=1 αivi . 

The number of vectors in a basis is called the dimension of the vector space. In 
the context of transformers, the notion of a basis can be seen as a way of encoding 
the essential features of data in a minimal, yet complete, form. The concept of basis 
extends naturally to function spaces, where Fourier and wavelet bases are particularly 
relevant in understanding the representations used in machine learning models. 

For instance, in .R3, the standard basis is .{e1, e2, e3}, where .ei is the vector with 
a  1  in  the . i th position and 0 elsewhere. Any vector in .R

3 can be uniquely expressed 
as a linear combination of these basis vectors. This idea generalizes to infinite-
dimensional spaces, where bases may consist of an infinite number of vectors, such 
as the set of functions .{1, x, x2, x3, . . . } in the vector space of polynomials. 

Understanding subspaces and bases is fundamental for grasping the structure of 
vector spaces, which in turn is crucial for analyzing the linear algebraic operations 
underlying the mechanisms of transformers. These concepts also pave the way for 
exploring more advanced topics like eigenvectors, eigenspaces, and their role in 
simplifying linear transformations—a theme that recurs in the study of symmetries 
and invariances within transformer models. 

1.1.2 Linear Transformations 

Linear transformations, also known as linear maps, are the backbone of linear algebra 
and play a pivotal role in understanding the geometric and algebraic structure of 
vector spaces. A linear transformation .T from a vector space .V over a field . F to 
another vector space .W over the same field is a function.T : V → W that preserves 
vector addition and scalar multiplication. Formally, for all .u, v ∈ V and .α ∈ F,  the  
map . T satisfies the following properties: 

. T (u + v) = T (u) + T (v)

. T (αu) = αT (u).

These properties ensure that the transformation .T respects the linear structure 
of the vector space . V , making .T an essential tool for analyzing and manipulating 
vectors in . V . The concept of linear transformations generalizes the idea of matrix 
multiplication and encompasses many operations in both pure and applied mathe-
matics, including the transformations used in neural networks and, specifically, in 
the architecture of transformers. 

The geometric interpretation of a linear transformation is that it maps lines to lines 
and preserves the origin. This geometric perspective is crucial in understanding how 
linear transformations can be used to represent symmetries and invariances, which are
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fundamental in the design of intelligent systems such as transformers. For example, 
in computer vision, linear transformations can represent rotations, translations, and 
scalings, which are important for recognizing objects regardless of their orientation 
or size. 

Kernels and Images 

Given a linear transformation .T : V → W , two subspaces of particular interest are 
the kernel and the image of . T . The kernel of . T , denoted .ker(T ),  is  the  set  of  all  
vectors in .V that are mapped to the zero vector in . W : 

. ker(T ) = {v ∈ V | T (v) = 0}.

The kernel is a subspace of.V because it satisfies the conditions for a subspace: it 
contains the zero vector, is closed under vector addition, and is closed under scalar 
multiplication. The dimension of the kernel, known as the nullity of . T , provides 
important information about the linear dependence among the vectors in. V . A trans-
formation with a trivial kernel (i.e., .ker(T ) = {0}) is injective (one to one), meaning 
that .T preserves the distinctness of vectors, which is crucial in applications where 
uniqueness is important, such as encoding information. 

The image of. T , denoted.Im(T ), is the set of all vectors in.W that can be expressed 
as .T (v) for some .v ∈ V : 

. Im(T ) = {w ∈ W | w = T (v) for some v ∈ V }.

The image is a subspace of . W , and its dimension is called the rank of . T .  The  
rank of a transformation provides a measure of how much of the vector space . W
is “covered” by the transformation . T . The Rank-Nullity Theorem, a fundamental 
result in linear algebra, relates the dimensions of the kernel and image of a linear 
transformation: 

Theorem 1.1 (Rank-Nullity Theorem) Let .V and .W be vector spaces over a field 
. F, and let .T : V → W be a linear transformation. Then the dimension of the vector 
space .V is equal to the sum of the rank of .T (the dimension of the image of . T ) and 
the nullity of . T (the dimension of the kernel of . T ). Formally, 

. dim(V ) = rank(T ) + nullity(T ),

where .rank(T ) = dim(Im(T )) is the dimension of the image of . T , and . nullity(T ) =
dim(ker(T )) is the dimension of the kernel of . T . 

This theorem encapsulates the idea that the dimension of the domain .V of a 
linear transformation is partitioned into two parts: the dimension of the image
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(which corresponds to the effective output of the transformation) and the dimen-
sion of the kernel (which corresponds to the loss of information or degeneracy in the 
transformation) [ 4, 29]. 

The concepts of kernel and image are intimately related to symmetry and geom-
etry. For example, if a linear transformation represents a symmetry operation, such 
as a rotation or reflection, the kernel may represent directions that remain invariant 
under the transformation (e.g., the axis of rotation), while the image represents the 
space that is affected by the transformation. These ideas are directly applicable to the 
design of transformer models, where understanding the flow of information and the 
preservation of structure under transformations is key to building intelligent systems. 

Matrix Representations 

Every linear transformation .T : V → W can be represented by a matrix once bases 
for .V and.W are chosen. If .{v1, v2, . . . , vn} is a basis for .V and.{w1,w2, . . . ,wm} is 
a basis for . W , then the matrix representation of . T , denoted.[T ],  is  the .m × n matrix 
whose . j th column is the vector of coordinates of .T (v j ) with respect to the basis 
.{wi }: 

. [T ] =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎞

⎟
⎟
⎟
⎠

,

where .T (v j ) = ∑m
i=1 ai jwi . The matrix .[T ] encapsulates all the information about 

the linear transformation .T and allows us to perform computations with .T in a 
straightforward manner using matrix arithmetic. 

The matrix representation of a linear transformation provides a bridge between 
abstract linear algebra and concrete numerical methods. For instance, the composition 
of two linear transformations corresponds to the multiplication of their respective 
matrices. This correspondence is crucial in many applications, including those in 
machine learning, where complex operations are often broken down into sequences 
of linear transformations, each represented by a matrix. 

Matrices also have a natural geometric interpretation. For example, in .R2,  a  
rotation m atrix 

. R(θ) =
(
cos θ − sin θ

sin θ cos θ

)

represents a rotation by an angle . θ about the origin. Similarly, a reflection matrix 

.M =
(
1 0
0 −1

)
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represents a reflection across the x-axis. These geometric transformations are criti-
cal in understanding symmetries in physical systems and in the design of artificial 
intelligence models that must be invariant to such transformations. 

In the context of transformers, matrix representations are used extensively to 
describe the operations within the network. For example, the weights of the layers 
in a transformer can be viewed as matrices that transform input vectors into output 
vectors. Understanding the properties of these matrices, such as their eigenvalues and 
eigenvectors, can provide deep insights into the behavior of the model, including its 
ability to capture symmetries and invariances in the data. 

Moreover, the study of matrices and their transformations is closely related to 
the study of eigenvalues and eigenvectors, which describe the directions in which 
a transformation acts as a simple scaling operation. These concepts are fundamen-
tal in many areas of applied mathematics, including quantum mechanics, where the 
eigenvectors of an operator represent the possible states of a system, and in machine 
learning, where they can be used to identify the most important features or compo-
nents of the data. Understanding linear transformations, their kernels, images, and 
matrix representations are essential for analyzing and designing transformer archi-
tectures. These concepts provide the mathematical framework for exploring how 
information is processed and transformed within the model, how symmetries are 
preserved or broken, and how the geometry of the input space is manipulated to 
produce intelligent behavior. 

1.1.3 Eigenvalues and Eigenvectors 

Eigenvalues and eigenvectors are fundamental concepts in linear algebra that pro-
vide deep insights into the structure of linear transformations [ 54]. Given a linear 
transformation.T : V → V on a vector space. V , an eigenvector.v ∈ V is a non-zero 
vector that is scaled by . T by a scalar factor known as the eigenvalue. Formally, . v is 
an eigenvector of . T corresponding to the eigenvalue .λ ∈ F if 

. T (v) = λv.

This equation indicates that the action of .T on . v does not change its direction 
but only its magnitude. The scalar . λ captures the amount of scaling, and the vector 
. v reveals the direction along which this scaling occurs. To find the eigenvalues of a 
linear transformation, one must solve the characteristic equation, which is derived 
from the determinant of the matrix representation of .T minus . λ times the identity 
matrix: 

. det([T ] − λI ) = 0.
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The solutions to this polynomial equation in . λ give the eigenvalues, and for each 
eigenvalue, the corresponding eigenvectors are found by solving the system of linear 
equations: 

. ([T ] − λI )v = 0.

Eigenvalues and eigenvectors are pivotal in many areas of mathematics, including 
the study of symmetries, stability analysis, and the decomposition of linear transfor-
mations into simpler, more interpretable components. In the context of transformers, 
eigenvalues and eigenvectors help us understand how information is propagated and 
transformed through the layers, providing insights into the model’s ability to capture 
complex patterns and symmetries in data. 

The geometric interpretation of eigenvectors is closely tied to the concepts of 
symmetry and invariance. For instance, in quantum mechanics, the eigenvectors of 
an operator represent the possible states of a system, each associated with a specific 
measurement outcome (the eigenvalue). Similarly, in the analysis of mechanical sys-
tems, eigenvectors describe the principal directions of vibration, while eigenvalues 
indicate the frequencies. These interpretations are directly applicable to machine 
learning models, where understanding the directions in which data is most naturally 
transformed can lead to better feature extraction and dimensionality reduction. 

Spectral Theorem 

The spectral theorem is a cornerstone result in linear algebra, particularly in the 
study of normal operators on finite-dimensional vector spaces [ 25, 38]. It provides a 
powerful tool for analyzing linear transformations by decomposing them into simpler 
components. For a linear operator .T : V → V on a finite-dimensional vector space 
.V over . C, the spectral theorem states that .T is diagonalizable if and only if it is 
normal, meaning.T T ∗ = T ∗T , where.T ∗ is the conjugate transpose of. T . The spectral 
theorem asserts that a normal operator . T can be represented as 

. T = U�U ∗,

where. U is a unitary matrix (satisfying.U ∗U = UU ∗ = I ), and. � is a diagonal matrix 
whose entries are the eigenvalues of . T . This result generalizes the diagonalization 
of symmetric matrices to a broader class of matrices and operators, allowing for a 
more profound understanding of their action. 

The spectral theorem has profound implications in various domains, including 
quantum mechanics, where it underpins the spectral decomposition of observables, 
and in functional analysis, where it plays a critical role in the study of compact 
operators on Hilbert spaces. In the context of transformers, the spectral theorem can 
be used to analyze the stability and behavior of the layers by examining their spectral 
properties. 

The geometric interpretation of the spectral theorem is that the transformation . T
can be understood as a rotation (given by. U ) followed by a scaling along orthogonal
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directions (given by . �). This decomposition reveals the intrinsic symmetries of the 
transformation, which are crucial for understanding how transformers maintain or 
break symmetry during the processing of data. In machine learning, these symme-
tries often correspond to invariances in the data, such as rotational or translational 
invariance, which the model must learn to recognize and exploit. 

Diagonalization 

Diagonalization is the process of finding a basis for a vector space .V in which the 
matrix representation of a linear transformation. T is diagonal. Formally, a matrix . A
is said to be diagonalizable if there exists an invertible matrix .P such that 

. P−1AP = D,

where .D is a diagonal matrix. The columns of .P are the eigenvectors of . A, and the 
diagonal entries of .D are the corresponding eigenvalues. Diagonalization simplifies 
the analysis of linear transformations by reducing them to scaling operations along 
the eigenvectors, which are the principal directions of the transformation. 

The process of diagonalization reveals the underlying structure of the transforma-
tion and allows for the decomposition of complex transformations into simpler, more 
interpretable components. This decomposition is particularly useful in the study of 
dynamical systems, where the long-term behavior of the system can often be under-
stood by examining the eigenvalues of the transformation matrix. If the eigenval-
ues are all distinct and non-zero, the transformation is not only diagonalizable but 
also invertible, meaning that the system’s behavior can be fully described by its 
eigenvalues and eigenvectors. 

In the context of transformers, diagonalization can provide insights into the behav-
ior of layers and their ability to propagate information. For instance, in the self-
attention mechanism, understanding the eigenvalues and eigenvectors of the atten-
tion matrix can reveal how information is weighted and combined across different 
parts of the input sequence. This understanding is crucial for designing models that 
effectively capture the hierarchical and symmetric structures in data. 

The process of diagonalization is closely related to the concepts of symmetry 
and invariance. A diagonal matrix is invariant under the change of basis represented 
by its eigenvectors, meaning that the transformation acts independently along each 
of these directions. This invariance is a key feature in many intelligent systems, 
where the ability to recognize and exploit symmetry can lead to more efficient and 
robust models. In particular, transformers, which are designed to process data with 
complex, hierarchical structures, can benefit greatly from the insights provided by 
diagonalization and spectral analysis.
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1.2 Group Theory and Symmetries 

1.2.1 Basic Concepts of Group Theory 

Group theory is a branch of abstract algebra that studies algebraic structures known 
as groups. Groups are fundamental in understanding the concept of symmetry in 
mathematics, physics, and various other disciplines, including the study of neural 
networks and transformers. A group .G is a set equipped with a binary operation . ·
(often called multiplication) that combines any two elements . a and . b in .G to form 
another element .a · b in . G. The group operation must satisfy the following axioms: 

1. Closure: For all .a, b ∈ G, the product .a · b ∈ G. 
2. Associativity: For all .a, b, c ∈ G, .(a · b) · c = a · (b · c). 
3. Identity Element: There exists an element .e ∈ G such that for all .a ∈ G, . e · a =

a · e = a. This element . e is called the identity element of the group. 
4. Inverse Element: For each .a ∈ G, there exists an element .a−1 ∈ G such that 

.a · a−1 = a−1 · a = e, where . e is the identity element. 

These axioms define the abstract structure of a group and provide a framework for 
studying the symmetry and invariance properties of various mathematical objects. 
Groups can be finite or infinite, and they can arise in many different contexts, from 
the symmetries of geometric shapes to the permutations of a set, and even to the 
automorphisms of algebraic structures. 

The study of groups is motivated by the need to understand symmetry in a struc-
tured way. For example, the set of all rotations of a regular polygon forms a group 
under the operation of composition, reflecting the symmetrical properties of the 
shape. This group encapsulates the geometric symmetries of the polygon and allows 
for a deep understanding of how these symmetries interact. 

Groups, Subgroups, and Cosets 

A subgroup.H of a group.G is a subset of.G that is itself a group under the operation 
of . G. Formally, .H ⊆ G is a subgroup if it satisfies the following conditions: 

1. The identity element of .G is in . H . 
2. .H is closed under the group operation: For all .h1, h2 ∈ H , .h1 · h2 ∈ H . 
3. .H is closed under taking inverses: For all .h ∈ H , .h−1 ∈ H . 

Subgroups are important because they inherit the algebraic structure of the larger 
group and often reveal the internal symmetries of the group. For example, the set 
of all rotations of a cube that leave a given face fixed forms a subgroup of the full 
rotation group of the cube. This subgroup reflects the symmetry of the cube with 
respect to that particular face. 

Given a subgroup.H of a group. G, one can form cosets of.H in. G. A left coset of 
.H in.G is a set of the form.gH = {g · h | h ∈ H} for some.g ∈ G. Similarly, a right
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coset is a set of the form .Hg = {h · g | h ∈ H}. Cosets partition the group .G into 
disjoint subsets, each of which is a translation of the subgroup .H by some element 
of . G. The number of distinct cosets of .H in .G is called the index of .H in .G and is 
denoted by .[G : H ]. 

The concept of cosets is crucial in understanding the structure of groups and their 
subgroups. For instance, Lagrange’s theorem, a fundamental result in group theory, 
states that the order of any finite subgroup .H of a finite group .G divides the order 
of . G. This theorem can be understood through the lens of cosets, as it implies that 
the number of elements in .G is equal to the number of elements in .H multiplied 
by the number of cosets of . H . Cosets also play a significant role in the construction 
of quotient groups, which are groups formed by “collapsing” a normal subgroup 
.N of .G to the identity element. The quotient group .G/N consists of the cosets of 
.N in . G, and it inherits the group structure from . G. Quotient groups are essential 
in understanding how larger groups can be decomposed into simpler components, 
a theme that is central to the study of symmetry and intelligence in mathematical 
systems. 

In the context of machine learning, groups, subgroups, and cosets can be used to 
model the symmetries present in data. For example, in computer vision, the sym-
metries of an object under rotation and translation can be represented by a group, 
and the subgroup structure can reveal invariant features of the object. Transformers, 
with their ability to capture hierarchical structures, can be seen as exploiting these 
symmetries to efficiently process and transform data. 

Group Homomorphisms 

A group homomorphism is a function between two groups that preserves the group 
structure. Formally, if .G and .H are groups, a homomorphism from .G to .H is a 
function .φ : G → H such that for all .a, b ∈ G, 

. φ(a · b) = φ(a) · φ(b),

where . · denotes the group operation in .G and in . H . The property of preserving the 
group operation means that the image of a product under the homomorphism is the 
product of the images. This preservation of structure makes homomorphisms a central 
concept in the study of groups, as they allow for the comparison and classification 
of groups based on their structural similarities. 

A homomorphism that is both injective (one to one) and surjective (onto) is called 
an isomorphism. If there exists an isomorphism between two groups .G and . H , 
then .G and .H are said to be isomorphic, denoted .G ∼= H . Isomorphic groups are 
structurally identical, meaning that they have the same group-theoretic properties, 
though their elements may be different. This concept is fundamental in understanding 
how different mathematical objects can exhibit the same symmetries.
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The kernel of a group homomorphism.φ : G → H is the set of elements in.G that 
map to the identity element in . H : 

. ker(φ) = {g ∈ G | φ(g) = eH },

where.eH is the identity element in. H . The kernel is a normal subgroup of. G, and the 
First Isomorphism Theorem states that the image of . φ is isomorphic to the quotient 
group .G/ ker(φ): 

. G/ ker(φ) ∼= Im(φ).

This theorem provides a deep connection between homomorphisms, kernels, and 
quotient groups, and it plays a crucial role in the classification and analysis of groups. 

Group homomorphisms are not just abstract constructs; they have concrete appli-
cations in many areas of mathematics and science. For example, in geometry, the 
symmetry group of a shape can be related to the symmetry group of a different shape 
through a homomorphism, revealing how one set of symmetries can be mapped onto 
another. In physics, homomorphisms between symmetry groups can describe how 
different physical systems are related, such as how the symmetries of a molecule are 
related to the symmetries of its constituent atoms. 

In the context of transformers and machine learning, group homomorphisms play 
a crucial role in modeling how symmetries in the input data are preserved or trans-
formed by the network. To understand this, we can consider a scenario where the input 
data exhibits certain symmetries that can be described by a group . G. The elements 
of.G represent symmetry operations, such as rotations, translations, or permutations, 
that can be applied to the data. 

Let. X denote the input space, which could be a space of images, sequences, or any 
other structured data. The group .G acts on .X via a group action .α : G × X → X , 
where for each.g ∈ G and.x ∈ X , the action.α(g, x)describes the transformed version 
of. x under the symmetry operation. g. In mathematical terms, this means that for each 
fixed .g ∈ G,  the  ma  p  .αg : X → X defined by .αg(x) = α(g, x) is a transformation 
of . X . 

In machine learning, the data .X is often embedded into a higher-dimensional 
feature space .V via a representation map .φ : X → V . This embedding can be seen 
as a preprocessing step where the raw data.x ∈ X is transformed into a feature vector 
.φ(x) ∈ V , which is then fed into the neural network. If the data .X has an inherent 
symmetry described by the group . G, it is desirable for the embedding . φ to respect 
this symmetry. Specifically, if .αg(x) is the transformed data under the symmetry . g, 
we would like the embedding of the transformed data .φ(αg(x)) to be related to the 
embedding of the original data .φ(x) in a way that reflects the action of . g. 

This leads to the concept of a group homomorphism associated with the neural 
network layers. Let.ρ : G → GL(V ) be a representation of the group. G on the vector 
space . V , where .GL(V ) denotes the group of invertible linear transformations on . V .
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The map .ρ(g) represents the action of the group element . g on the feature space . V . 
Ideally, we want the embedding . φ to satisfy the following equivariance condition: 

. φ(αg(x)) = ρ(g)φ(x) for all g ∈ G and x ∈ X.

This equation states that applying a group transformation . g to the input data . x
and then embedding the result into the feature space .V should be equivalent to first 
embedding. x into. V and then applying the linear transformation.ρ(g) to the resulting 
feature vector. The map. ρ is a group homomorphism because it preserves the group 
structure: 

. ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G.

The layers of a transformer can then be viewed as a sequence of homomorphisms 
.T1, T2, . . . , Tn , each mapping the feature space .Vi of the . i th layer to the feature 
space .Vi+1 of the next layer. Each transformation .Ti : Vi → Vi+1 is expected to 
preserve the group action, meaning that for each layer. i there exists a homomorphism 
.ρi : G → GL(Vi ) such that 

. Ti (ρi (g)v) = ρi+1(g)Ti (v) for all v ∈ Vi and g ∈ G.

This condition ensures that the symmetry described by the group .G is preserved 
throughout the layers of the network. In other words, the action of the group on the 
data at any layer is consistent with the action of the group on the data at previous 
and subsequent layers. 

To capture this symmetry in practice, one often designs the architecture of the 
transformer so that each layer.Ti naturally respects the group action. For example, in 
the case of rotational symmetries, the feature spaces .Vi can be chosen to be spaces 
of spherical harmonics, which are representations of the rotation group .SO(3).  The  
layers .Ti are then constructed to act on these spaces in a way that is consistent with 
the rotational symmetry. 

Understanding these transformations through the lens of group theory leads to 
more robust and interpretable models. The equivariance condition ensures that the 
network processes data in a way that respects the symmetries present in the input, 
leading to better generalization to unseen data that exhibits the same symmetries. 
For instance, if the input data consists of images, and the group .G represents the 
group of rotations, then a network that respects the rotational symmetry will perform 
consistently regardless of the orientation of the input images. Moreover, this approach 
allows for a more efficient representation of the data, as the model can leverage the 
symmetry to reduce the complexity of the learning task. Instead of learning separate 
representations for each possible transformation of the data, the model can learn a 
single representation that is equivariant under the group action. This not only reduces 
the number of parameters needed but also leads to a more interpretable model, as the 
learned features align with the underlying symmetries of the data.
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1.2.2 Representation Theory of Finite Groups 

Representation theory is a powerful tool that allows us to study abstract algebraic 
structures, such as groups, by representing their elements as matrices and their oper-
ations as matrix multiplication. This approach provides a concrete way to analyze 
the symmetries of a system, which is particularly relevant in areas such as physics, 
chemistry, and computer science. In the context of transformers, understanding group 
representations is crucial for analyzing how symmetries in data are captured and 
processed by the model. 

Group Representations 

A representation of a group.G on a vector space. V over a field. F is a homomorphism 
.ρ : G → GL(V ), where .GL(V ) is the group of all invertible linear transformations 
of . V . In other words, a representation is a way of associating each element . g ∈ G
with an invertible matrix .ρ(g) in such a way that the group operation is preserved: 

. ρ(g1g2) = ρ(g1)ρ(g2)

for all.g1, g2 ∈ G. The vector space. V is called the representation space of. ρ, and the 
dimension of .V is called the degree of the representation. If .V is finite-dimensional, 
the representation . ρ can be described by a set of .n × n matrices, where . n is the 
dimension of . V . 

The study of group representations allows us to understand the structure of a group 
by examining how it acts on vector spaces. For example, consider the cyclic group 
.Cn = 〈g〉 of order . n. A representation of .Cn is given by associating the generator . g
with  a  matr  ix .ρ(g) such that .ρ(gn) = I , where . I is the identity matrix. One simple 
representation of .Cn is the one-dimensional representation where .ρ(g) = e2π i/n , 
which corresponds to a rotation by .2π/n in the complex plane. 

Group representations are particularly important in understanding symmetries in 
geometry and physics. For instance, the rotation group.SO(3) has representations that 
describe how objects in three-dimensional space can be rotated. These representations 
are used extensively in quantum mechanics, where the symmetries of a system are 
represented by the group of rotations, and the states of the system correspond to 
vectors in a representation space. 

In the context of machine learning and transformers, group representations can be 
used to model how data is transformed as it passes through the layers of the network. 
For example, the self-attention mechanism in transformers can be interpreted as a 
representation of a permutation group, where the elements of the group correspond to 
different ways of permuting the input sequence. By understanding the representation 
theory of the group, we can gain insights into how the model captures the symmetries 
and invariances in the data.
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Character Theory 

Character theory is a branch of representation theory that focuses on the trace of the 
matrices associated with group elements. The character of a representation. ρ : G →
GL(V ) is a function .χ : G → F defined by 

. χ(g) = Tr(ρ(g)),

where.Tr(ρ(g)) denotes the trace of the matrix.ρ(g). The character. χ encodes impor-
tant information about the representation, such as its degree (given by.χ(e), where. e
is the identity element of. G) and how the representation decomposes into irreducible 
components. 

One of the key results in character theory is that characters are class functions, 
meaning they are constant on conjugacy classes of the group. In other words, if . g1
and .g2 are conjugate in .G (i.e., there exists .h ∈ G such that .g2 = hg1h−1), then 

. χ(g1) = χ(g2).

This property greatly simplifies the study of representations, as it reduces the 
problem to understanding the characters on a finite number of conjugacy classes. 

Characters play a crucial role in the classification of representations. The orthog-
onality relations for characters provide a powerful tool for determining whether two 
representations are equivalent and for decomposing a given representation into irre-
ducible components. For a finite group .G and two irreducible characters . χ and . ψ , 
the orthogonality relation states that 

. 
1

|G|
∑

g∈G
χ(g)ψ(g) = δχψ,

where.|G| is the order of the group, and.δχψ is the Kronecker delta, which is 1 if. χ = ψ

and 0 otherwise. This relation implies that the characters of different irreducible 
representations are orthogonal, and it provides a method for finding the multiplicities 
of irreducible components in a given representation. 

Character theory also has deep connections to the geometry of the underlying 
space on which the group acts. For example, the characters of the rotation group. SO(3)
are related to spherical harmonics, which describe the symmetries of functions on the 
sphere. These symmetries are exploited in many areas of physics and mathematics, 
including the analysis of atomic orbitals and the study of vibrations in mechanical 
systems. 

In the context of transformers, character theory can be used to analyze how the 
model captures the symmetries in the data. For example, if the data exhibits a certain 
group symmetry, the character of the representation associated with the model can 
reveal how this symmetry is preserved or broken as the data is processed. This 
analysis can lead to a deeper understanding of the model’s behavior and its ability 
to generalize to new data.
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1.2.3 Applications to Transformers 

The application of group theory and representation theory to transformer architec-
tures provides a profound understanding of how these models capture and utilize sym-
metries in data. Transformers, by their design, exploit various symmetries to achieve 
invariance and equivariance in tasks such as natural language processing, image 
recognition, and other domains where hierarchical and structured data are preva-
lent. By exploring the symmetries inherent in these architectures, we can develop 
deeper insights into how transformers generalize across different tasks and how their 
performance can be enhanced through mathematical principles. 

Symmetries in Transformer Architectures 

Symmetry plays a central role in the design and functioning of transformer archi-
tectures. A key symmetry in transformers is the permutation symmetry of the input 
sequences. In a standard transformer model, the input data, such as a sequence of 
words in a sentence, is processed without any inherent order bias, thanks to the 
self-attention mechanism. The self-attention mechanism treats all positions in the 
input sequence symmetrically, allowing the model to focus on different parts of the 
sequence based on the learned attention weights. 

Mathematically, this permutation symmetry can be understood through the lens 
of group theory. Let .Sn denote the symmetric group on . n elements, which repre-
sents all possible permutations of an .n-element sequence. The transformer model is 
invariant under the action of this group, meaning that if .σ ∈ Sn is a permutation of 
the input sequence indices, the output of the transformer remains consistent with this 
permutation, modulo the learned attention weights: 

. Transformer(σ · x) = σ · Transformer(x),

where.x = (x1, x2, . . . , xn) is the input sequence, and. σ · x = (xσ(1), xσ(2), . . . , xσ(n))

represents the permuted sequence. This symmetry ensures that the model does not 
privilege any specific order of the input sequence, making it particularly effective in 
tasks where the order of elements can vary or where relationships between elements 
are more important than their positions. 

Another important symmetry in transformer architectures is related to the attention 
mechanism itself. The self-attention mechanism computes a weighted sum of the 
input features, where the weights are determined by the learned attention scores. 
These attention scores can be viewed as elements of a matrix, and the transformation 
induced by the attention mechanism can be seen as a linear operator acting on the 
input features. The symmetry here lies in the fact that the attention mechanism is 
equivariant to the input features: it applies the same operation to all elements of the 
sequence, preserving the overall structure of the data.
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In more advanced transformer architectures, such as those used in image pro-
cessing or graph-based models, additional symmetries may be present. For example, 
in vision transformers (ViTs), rotational and translational symmetries of the input 
images can be exploited to improve model performance. By incorporating these sym-
metries into the architecture, the model can become more robust to variations in the 
input data, leading to better generalization across different tasks and datasets. 

Invariant Subspaces in Attention Mechanisms 

In the context of attention mechanisms, invariant subspaces play a crucial role in 
understanding how information is processed and retained throughout the layers of 
a transformer model. An invariant subspace under a linear operator .T : V → V is 
a subspace .W ⊆ V such that for every vector .w ∈ W , .T (w) ∈ W . In the context of 
transformers, the linear operator can represent the action of the attention mechanism 
on the feature space, and the invariant subspaces correspond to directions in the 
feature space that are preserved under the attention transformation. 

To formalize this, let .A represent the attention matrix derived from the self-
attention mechanism, and let . x be the input vector representing the features at a par-
ticular position in the sequence. The attention mechanism can be viewed as applying 
a linear transformation .TA to . x, where 

. TA(x) = Ax.

An invariant subspace .W under .TA satisfies 

. TA(w) = Aw ∈ W for all w ∈ W.

Invariant subspaces are significant because they represent directions in the fea-
ture space that remain unchanged by the attention mechanism. These directions can 
correspond to important features or patterns in the data that the model has learned 
to recognize and preserve throughout the layers. For example, in natural language 
processing, certain syntactic or semantic relationships between words may corre-
spond to invariant subspaces under the attention transformation, allowing the model 
to maintain these relationships as the information propagates through the network. 

The study of invariant subspaces is closely related to the eigenvalues and eigen-
vectors of the attention matrix. A. The eigenvectors corresponding to eigenvalues with 
absolute value 1 define invariant subspaces that are neither amplified nor diminished 
by the attention mechanism. These eigenvectors can be interpreted as the principal 
directions along which the attention mechanism operates, preserving certain features 
while allowing others to be modified. 

This concept can be further extended to analyze the stability and convergence prop-
erties of the transformer model. If the attention mechanism consistently preserves 
certain invariant subspaces, the model is more likely to retain important information 
throughout its layers, leading to better performance and generalization. On the other
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hand, if the attention mechanism disrupts these invariant subspaces, the model may 
struggle to maintain coherence in its output, leading to poorer performance. 

1.3 Metric Spaces and Topological Preliminaries 

1.3.1 Definition of Metric Spaces 

A metric space is a set equipped with a function that defines a notion of distance 
between any two elements. Formally, a metric space is a pair.(X, d), where. X is a set, 
and .d : X × X → R is a function (called a metric or distance function) satisfying 
the following properties for all .x, y, z ∈ X : 

1. Non-negativity: .d(x, y) ≥ 0 (the distance between any two points is non-
negative). 

2. Identity of indiscernibles:.d(x, y) = 0 if and only if .x = y (the distance between 
two distinct points is positive). 

3. Symmetry: .d(x, y) = d(y, x) (the distance is symmetric with respect to its 
arguments). 

4. Triangle inequality:.d(x, z) ≤ d(x, y) + d(y, z) (the direct distance between two 
points is always less than or equal to the sum of the distances through a third point). 

These axioms encapsulate the essential properties of distance in a geometric space 
and provide the foundation for many topological concepts. The metric . d induces a 
topology on . X , which allows us to define concepts such as continuity, convergence, 
and compactness. The importance of metric spaces in the study of attention mecha-
nisms lies in the ability to measure distances between representations (such as word 
embeddings or image features) and to understand how these distances influence the 
behavior of the model. 

In the context of machine learning and transformers, the metric space .(X, d) can 
represent the space of input data (such as the space of word embeddings in natural 
language processing or the space of image features in computer vision). The metric 
. d measures how similar or different two data points are, which is critical for tasks 
such as clustering, classification, and information retrieval. For example, in a lan-
guage model, the distance between two word embeddings might reflect the semantic 
similarity between the corresponding words, influencing the attention mechanism’s 
ability to focus on relevant parts of the input sequence. 

Examples of Metric Spaces 

The concept of a metric space is quite general and can be instantiated in various ways, 
depending on the nature of the set .X and the metric . d. Some common examples of 
metric spaces include
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1. Euclidean Space: The most familiar example of a metric space is the .n-
dimensional Euclidean space .Rn equipped with the Euclidean metric. For any two 
points .x = (x1, x2, . . . , xn) and .y = (y1, y2, . . . , yn) in .Rn , the Euclidean distance 
is given by 

. d(x, y) =
√
√
√
√

n∑

i=1

(xi − yi )2.

This distance corresponds to the straight-line distance between the points. x and. y in 
.R

n , and it satisfies all the properties of a metric. The Euclidean space is fundamental 
in geometry and is the setting for many problems in machine learning, including 
clustering and classification. 

2. Discrete Metric Space: For any set . X , the discrete metric is defined by 

. d(x, y) =
{
0 if x = y,

1 if x �= y
.

This metric treats all distinct points as being at the same distance from each 
other, regardless of their nature. The discrete metric space is useful in theoretical 
considerations where we want to analyze properties that hold in the most extreme 
case of separation between points. 

3. Manhattan Distance (Taxicab Metric): In .Rn , another important metric is the 
Manhattan distance, defined by 

. d(x, y) =
n∑

i=1

|xi − yi |.

This metric reflects the distance traveled along grid-like paths, such as the streets 
in a city laid out in a grid pattern. The Manhattan distance is widely used in machine 
learning, particularly in problems where the grid structure is inherent, such as image 
processing with pixel grids. 

4. Cosine Similarity as a Metric: In the context of high-dimensional vector spaces, 
such as those used in word embeddings, the cosine similarity is often used as a 
measure of similarity between vectors. While cosine similarity itself is not a metric 
(because it does not satisfy the triangle inequality), the related cosine distance defined 
by 

. d(x, y) = 1 − x · y
‖x‖‖y‖

can be used to construct a valid metric, under certain conditions. This metric is 
particularly useful in natural language processing, where the direction of vectors 
(rather than their magnitude) is often more informative.
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5. Hamming Distance: For a set of strings of equal length over a fixed alphabet, 
the Hamming distance between two strings is the number of positions at which the 
corresponding symbols differ. Mathematically, for two strings .s1 and.s2 of length . n, 

. d(s1, s2) =
n∑

i=1

δ(s1[i], s2[i]),

where.δ(a, b) = 1 if .a �= b, and. 0 otherwise. The Hamming distance is widely used 
in coding theory and information retrieval, where it measures the difference between 
binary strings or other discrete sequences. 

These examples illustrate the versatility of metric spaces in capturing different 
notions of distance and similarity across various domains. In machine learning, 
choosing the appropriate metric for the problem at hand is crucial for the success 
of the model, as the metric determines how the model perceives the relationships 
between data points and how it learns to focus on relevant features. 

Convergence and Completeness 

Convergence and completeness are fundamental concepts in the study of metric 
spaces, providing a framework for understanding the behavior of sequences and the 
structure of the space itself. A sequence .{xn} in a metric space .(X, d) is said to 
converge to a point .x ∈ X if, for every .ε > 0, there exists an integer .N such that 
for all .n ≥ N , .d(xn, x) < ε. In other words, the elements of the sequence eventu-
ally get arbitrarily close to . x , and . x is called the limit of the sequence, denoted 
.limn→∞ xn = x . 

Convergence in metric spaces generalizes the notion of convergence in Euclidean 
spaces to more abstract settings. For example, in the space of continuous functions, 
convergence can describe the behavior of function sequences as they approach a 
limiting function. This concept is crucial in machine learning, particularly in the 
analysis of algorithms that iteratively update models to minimize a loss function. 
Understanding the conditions under which these sequences converge ensures that 
the algorithm behaves predictably and leads to an optimal solution. 

A metric space .(X, d) is said to be complete if every Cauchy sequence in . X
converges to a point in. X . A sequence.{xn} is a Cauchy sequence if, for every.ε > 0, 
there exists an integer .N such that for all .m, n ≥ N , .d(xm, xn) < ε. Completeness 
ensures that the space has no “holes” or “gaps,” meaning that the space is sufficiently 
“large” to contain the limits of all converging sequences. The Completeness Theorem 
can be stated as follows: 

Theorem 1.2 (Completeness of Metric Spaces) Let .(X, d) be a metric space. Then 
.X is complete if and only if every Cauchy sequence in .X has a limit in . X. 

This theorem is fundamental in functional analysis, where the completeness of 
function spaces under various norms determines whether certain methods, such as
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Fourier series expansions or integral transforms, can be applied. In the context 
of transformers and neural networks, completeness plays a role in ensuring that 
optimization algorithms, such as gradient descent, behave well, particularly when 
working in high-dimensional spaces where the geometry of the space can become 
complex. 

For instance, in training deep neural networks, the parameter space is often mod-
eled as a high-dimensional metric space, and the completeness of this space ensures 
that sequences of iteratively updated parameters converge to a well-defined limit, 
representing the optimal set of parameters that minimizes the loss function. Without 
completeness, the optimization process might diverge or oscillate without reaching 
a stable solution. 

1.3.2 Topology of Metric Spaces 

Topology provides a framework for understanding the structure and properties of 
metric spaces beyond mere distances. In this section, we delve into the fundamental 
topological concepts within metric spaces that are crucial for studying the geom-
etry, symmetry, and continuity properties that are often leveraged in the design of 
intelligent systems like transformers. 

Open and Closed Sets 

In the context of a metric space .(X, d), the notions of open and closed sets are 
fundamental in defining the topology induced by the metric. An open set in .X is a 
subset .U ⊆ X such that for every point .x ∈ U , there exists a radius.ε > 0 for which 
the open ball centered at . x with radius . ε is entirely contained within . U . Formally, 
this means 

. For each x ∈ U, there exists ε > 0 such that B(x, ε) = {y ∈ X | d(x, y) < ε} ⊆ U.

Open sets can be thought of as generalizations of the concept of intervals in real 
analysis. In Euclidean spaces, for example, the set of all points within a certain 
distance from a given point forms an open ball, which is a prototypical example of 
an open set. Open sets are the building blocks of the topology on . X , as they satisfy 
the following properties: 

1. The union of any collection of open sets is open. 
2. The intersection of a finite number of open sets is open. 
3. The empty set . ∅ and the entire space .X are open. 

These properties allow us to define a topology on .X as the collection of all open 
sets. This topology governs the notions of convergence, continuity, and compactness 
within the space.
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Conversely, a closed set in .X is defined as a subset .C ⊆ X whose complement 
.X \ C is open. Equivalently, .C can be characterized by the property that it contains 
all its limit points, i.e., if a sequence .{xn} in .C converges to a point .x ∈ X , then . x
must also belong to . C . Mathematically, . C is closed if: 

. For every convergent sequence {xn} in C with lim
n→∞ xn = x, we have x ∈ C.

Closed sets in Euclidean space include familiar examples such as closed intervals 
.[a, b], finite sets, and the whole space.R

n . Closed sets are also important in defining 
the concept of continuity and in understanding the structure of metric spaces, as they 
possess properties analogous to those of open sets: 

1. The intersection of any collection of closed sets is closed. 
2. The union of a finite number of closed sets is closed. 
3. The empty set . ∅ and the entire space .X are closed. 

In many applications, including those in machine learning and neural networks, 
the distinction between open and closed sets plays a critical role in defining 
neighborhoods, boundaries, and the behavior of functions within the space. 

Continuity and Compactness 

Continuity is a key concept that relates the structure of metric spaces to the behavior 
of functions defined on them. A function. f : (X, dX ) → (Y, dY ) between two metric 
spaces is said to be continuous if it preserves the notion of “closeness” between points. 
Formally, . f is continuous at a point .x ∈ X if, for every .ε > 0, there exists a . δ > 0
such that 

. If dX (x, x ′) < δ, then dY ( f (x), f (x ′)) < ε.

This definition, known as the .ε-. δ definition of continuity, ensures that small 
changes in the input . x result in small changes in the output . f (x). Intuitively, a con-
tinuous function does not exhibit any “jumps” or “breaks,” making it essential for 
analyzing the smoothness and stability of transformations within machine learning 
models. 

A function . f : X → Y is continuous on the entire space .X if it is continuous at 
every point in . X . In the language of topology, . f is continuous if the preimage of 
every open set in . Y is an open set in . X . That is, 

. f −1(V ) is open in X whenever V is open in Y.

This topological definition of continuity connects directly with the earlier 
definition in metric spaces and generalizes to more abstract settings.
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Compactness is another fundamental topological property that has deep implica-
tions in analysis and geometry. A subset .K ⊆ X of a metric space .(X, d) is said to 
be compact if every open cover of .K has a finite subcover. An open cover of .K is a 
collection of open sets .{Uα}α∈A such that .K ⊆ ⋃

α∈A Uα , and a finite subcover is a 
finite subcollection .{Uα1 ,Uα2 , . . . ,Uαn } that still covers . K . 

Compactness can be understood as a generalization of the concept of finiteness. 
In Euclidean spaces, the Heine–Borel theorem provides a useful characterization: a 
subset of.Rn is compact if and only if it is closed and bounded. This characterization 
is particularly important in analysis, where compact sets exhibit properties such as: 

1. Every sequence in a compact set has a convergent subsequence (sequential 
compactness). 

2. Continuous functions on compact sets attain their maximum and minimum 
values (extreme value theorem). 

In the context of machine learning and attention mechanisms, compactness is 
important because it ensures the existence of solutions and the stability of algorithms. 
For example, when optimizing a loss function over a compact set of parameters, one 
can guarantee that a minimum exists and that the optimization process will converge 
to a well-defined solution. Moreover, in the analysis of neural networks, compactness 
can be used to study the behavior of functions representing the network layers, 
ensuring that the transformation of data through the network preserves essential 
properties. 

Continuity and compactness also intersect in the study of the stability and gen-
eralization of machine learning models. For instance, the Arzelà–Ascoli theorem 
provides conditions under which a family of continuous functions is relatively com-
pact, meaning that any sequence within the family has a subsequence that converges 
uniformly to a continuous function. This result has applications in understanding 
how neural networks approximate functions and how well they generalize to unseen 
data. 

1.3.3 Mappings Between Metric Spaces 

Mappings between metric spaces play a crucial role in understanding how structures 
and properties are preserved or transformed. These mappings can reveal deep insights 
into the geometry and symmetry of spaces, and are foundational to many concepts in 
analysis, geometry, and machine learning. In the context of transformers and attention 
mechanisms, understanding these mappings helps us explore how information is 
processed, how distances between data points are preserved or altered, and how 
convergence to fixed points is achieved.
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Isometries and Contractions 

An isometry is a mapping between metric spaces that preserves distances. Formally, 
if .(X, dX ) and .(Y, dY ) are two metric spaces, a function . f : X → Y is called an 
isometry if for all .x1, x2 ∈ X , 

. dY ( f (x1), f (x2)) = dX (x1, x2).

This property means that the structure of .X is preserved under . f ; the distances 
between points in. X remain unchanged when mapped to. Y . Isometries are important 
in geometry because they reflect symmetries of the space. For instance, in Euclidean 
space .R

n , rotations, translations, and reflections are examples of isometries, as they 
preserve the Euclidean distance between points. 

Isometries are not only significant in pure mathematics but also in the design of 
machine learning models, particularly in ensuring that certain geometric properties 
of the data are preserved as it is transformed through different layers of a neural 
network. For example, in applications like image processing, it is often desirable 
that the network’s transformations preserve the spatial relationships between pixels, 
which is a type of isometry. 

A contraction mapping is a stronger notion where the distances between points are 
not only preserved but actually reduced. A function . f : X → X on a metric space 
.(X, d) is called a contraction if there exists a constant .0 ≤ c < 1 such that for all 
.x1, x2 ∈ X , 

. d( f (x1), f (x2)) ≤ c · d(x1, x2).

The constant. c is called the Lipschitz constant of the contraction. The significance 
of contraction mappings lies in their tendency to bring points closer together, which 
has profound implications for the existence and uniqueness of fixed points—points 
.x∗ ∈ X such that . f (x∗) = x∗. 

Contractions are particularly important in the analysis of iterative algorithms, 
where a sequence of approximations .{xn} is generated by repeatedly applying a 
contraction mapping. The property that contractions reduce distances ensures that the 
sequence converges to a unique fixed point, as guaranteed by the Banach fixed-point 
theorem. 

The Banach Fixed-Point Theorem 

The Banach fixed-point theorem, also known as the contraction mapping theorem, 
is a fundamental result in metric space theory that provides conditions under which 
a contraction mapping on a complete metric space has a unique fixed point. The 
theorem is stated as follows:
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Theorem 1.3 (Banach Fixed-Point Theorem) Let .(X, d) be a complete metric 
space, and let . f : X → X be a contraction mapping with Lipschitz constant . c (i.e., 
.d( f (x1), f (x2)) ≤ c · d(x1, x2) for all .x1, x2 ∈ X with .0 ≤ c < 1). Then 

1. . f has a unique fixed point .x∗ ∈ X such that . f (x∗) = x∗. 
2. For any initial point.x0 ∈ X, the sequence.{xn}defined by.xn+1 = f (xn) converges 

to .x∗ as . n tends to infinity. 

The Banach fixed-point theorem is not only a cornerstone of analysis but also has 
far-reaching applications in various fields, including numerical analysis, differential 
equations, and machine learning. Its utility lies in the fact that it guarantees conver-
gence to a solution under mild conditions, making it an invaluable tool for proving 
the existence and uniqueness of solutions in iterative processes. 

In the context of machine learning, the Banach fixed-point theorem can be applied 
to analyze the convergence properties of training algorithms, particularly in the opti-
mization of neural networks. For example, when training a model, one often seeks 
to minimize a loss function by iteratively updating the model’s parameters. If the 
update rule can be modeled as a contraction mapping, the Banach fixed-point theo-
rem guarantees that the sequence of parameter updates will converge to a unique set 
of optimal parameters, provided the metric space of parameters is complete. 

Furthermore, in the design of attention mechanisms within transformers, the con-
cept of fixed points and contractions can be used to ensure that the iterative process of 
refining attention weights leads to stable and consistent results. For instance, in some 
advanced attention mechanisms, iterative refinement of weights may be employed to 
achieve better focus on relevant parts of the input sequence. By ensuring that these 
refinements act as contractions, one can guarantee convergence to a stable set of 
attention weights, thereby improving the robustness and performance of the model. 

The Banach fixed-point theorem also plays a role in understanding the stability 
of recurrent neural networks (RNNs), where the network’s output is fed back as 
input in a recursive manner. Ensuring that the transformation applied at each step 
is a contraction helps in preventing the explosion or vanishing of gradients, thus 
maintaining the stability of the learning process. 

1.4 Mathematical Foundations of Attention 

1.4.1 Attention as a Mapping 

Attention mechanisms are at the heart of modern transformer architectures, providing 
a powerful method for dynamically focusing on relevant parts of the input data. 
Mathematically, attention can be understood as a mapping that transforms input 
features into output features by assigning different weights to different parts of the 
input. This mapping is central to the model’s ability to capture dependencies and 
relationships across different elements in the input sequence.
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Formulation of Attention as a Function 

Let .X = {x1, x2, . . . , xn} be a set of input vectors, where each .xi ∈ R
d represents 

a feature vector in a .d-dimensional space. The goal of the attention mechanism is 
to produce a weighted combination of these input vectors, emphasizing those that 
are most relevant to a particular context or query. This process can be mathemat-
ically formulated as a function .A : Rn×d × R

n×d × R
n×d → R

n×d , where the first 
argument .Q represents the query matrix, composed of . n query vectors; the second 
argument .K represents the key matrix, composed of . n key vectors; and the third 
argument .V represents the value matrix, composed of . n value vectors. 

The attention function .A(Q, K , V ) is typically defined by first computing the 
attention scores as a similarity measure between the query vectors and the key vectors. 
A common choice for this similarity measure is the scaled dot product, given by 

. Si j = 〈qi ,k j 〉√
dk

,

where .qi and .k j are the . i th query vector and . j th key vector, respectively, .dk is the 
dimensionality of the key vectors, and .〈qi ,k j 〉 denotes the dot product. The scaling 
factor. 1√

dk
is introduced to mitigate the effect of increasing dimensionality, ensuring 

that the magnitude of the dot products remains stable as .dk grows. 
The attention scores.Si j are then normalized using the softmax function to produce 

the attention weights: 

. αi j = exp(Si j )
∑n

k=1 exp(Sik)
.

These attention weights.αi j indicate the relative importance of the. j th input vector 
to the . i th query vector. The final output of the attention mechanism is computed as 
a weighted sum of the value vectors: 

. zi =
n∑

j=1

αi jv j ,

where .v j is the . j th value vector, and . zi is the output vector corresponding to the . i th 
query vector. The complete attention mapping can be expressed as 

. A(Q, K , V ) = Softmax

(
QK�
√
dk

)

V .

This formulation highlights the role of attention as a mapping that transforms the 
input sequence.X into a new sequence.Z = {z1, z2, . . . , zn} by focusing on the most 
relevant components of the input based on the learned similarity structure.
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Properties of Attention Mappings 

The attention mapping .A : Rn×d × R
n×d × R

n×d → R
n×d possesses several key 

properties that are essential for understanding its behavior and effectiveness in cap-
turing relationships within the data. These properties can be analyzed in terms of 
geometry, symmetry, and stability. 

1. Linearity in Value Vectors: The attention mechanism is linear with respect to 
the value vectors . V . Given a linear combination of value matrices .V1 and .V2 with 
corresponding scalars . α and . β, the attention mapping satisfies 

. A(Q, K , αV1 + βV2) = αA(Q, K , V1) + βA(Q, K , V2).

This linearity property allows the attention mechanism to combine different sets 
of value vectors in a controlled manner, making it suitable for tasks where different 
sources of information need to be aggregated. 

2. Invariance Under Permutations: The attention mechanism is invariant under 
simultaneous permutations of the input sequence. Let .σ be a permutation of the 
indices .{1, 2, . . . , n}. Then, for any permutation . σ ,  we  ha  ve  

. A(Qσ , K σ , V σ ) = A(Q, K , V )σ ,

where.Qσ , .K σ , and.V σ denote the permuted query, key, and value matrices, respec-
tively. This invariance reflects the fact that the attention mechanism does not impose 
any fixed order on the input sequence, allowing it to flexibly capture dependencies 
across different parts of the sequence regardless of their positions. 

3. Commutativity of Attention Heads: In multi-head self-attention, the order 
in which the attention heads are applied does not affect the final output. This 
commutativity property can be expressed as 

. 

⊕
(Zσ(1), Zσ(2), . . . , Zσ(h))WO =

⊕
(Z1, Z2, . . . , Zh)WO

for any permutation . σ of the indices .{1, 2, . . . , h}. This property allows the model 
to process different attention heads in parallel, contributing to the efficiency and 
scalability of transformers. 

4. Boundedness and Stability: The attention mapping is bounded and stable under 
small perturbations of the input vectors. Let .δQ, .δK , and.δV be small perturbations 
of the query, key, and value matrices. Then the change in the output of the attention 
mapping is bounded by 

. ‖A(Q + δQ, K + δK , V + δV ) − A(Q, K , V )‖ ≤ C(‖δQ‖ + ‖δK‖ + ‖δV ‖)

for some constant. C . This property ensures that the attention mechanism is robust to 
small changes in the input, making it resilient to noise and variations in the data.
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5. Non-negativity and Probability Interpretation: The attention weights .αi j are 
non-negative and sum to 1 for each query vector, i.e.: 

. αi j ≥ 0 and
n∑

j=1

αi j = 1.

This property gives the attention mechanism a probabilistic interpretation, where 
the weights.αi j can be viewed as probabilities that determine the importance of each 
value vector in constructing the output vector. This probabilistic nature is crucial 
for tasks that require a soft selection of relevant information from the input, such as 
language modeling and translation. 

1.4.2 The Geometry of High-Dimensional Spaces 

As attention mechanisms and transformers often operate in high-dimensional spaces, 
understanding the geometric properties of these spaces is crucial for analyzing how 
these models function and why they are effective. The study of high-dimensional 
spaces introduces unique challenges and opportunities that are not present in 
lower dimensions, particularly concerning the phenomena known as the curse of 
dimensionality and the concentration of measure. 

Curse of Dimensionality 

The curse of dimensionality refers to the various phenomena that arise when work-
ing in high-dimensional spaces that make intuitive concepts from low-dimensional 
spaces fail to generalize. These effects become particularly pronounced as the dimen-
sionality. d of the space increases, leading to challenges in computation, data analysis, 
and learning. 

One of the most significant manifestations of the curse of dimensionality is the 
rapid increase in the volume of the space as the dimension increases. Consider the 
unit hypercube in .R

d , defined as the set 

. C = {x ∈ R
d | 0 ≤ xi ≤ 1, i = 1, 2, . . . , d}.

The volume.Vd(C) of this hypercube is simply.1d = 1, regardless of the dimension 
. d. However, consider a hypersphere inscribed within this hypercube with radius 
.r = 1

2 . The volume of this hypersphere, given by .Vd(S),  i  s  

.Vd(S) = πd/2

�
(
d
2 + 1

)rd = πd/2

�
(
d
2 + 1

)

(
1

2

)d

,
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where .� is the Gamma function, which generalizes the factorial function. As . d
increases, the volume of the hypersphere decreases exponentially compared to the 
volume of the hypercube. This result implies that in high-dimensional spaces, most 
of the volume of the hypercube is concentrated near its corners, rather than being 
uniformly distributed throughout the interior. 

This phenomenon has profound implications for machine learning and data 
analysis: 

1. Sparse Data: In high-dimensional spaces, data points tend to be sparsely dis-
tributed, making it difficult to find close neighbors or meaningful clusters. As a result, 
algorithms that rely on proximity or density, such as k-nearest neighbors or cluster-
ing algorithms, may perform poorly without appropriate dimensionality reduction 
techniques. 

2. Distance Metrics: The relative distances between points in high-dimensional 
spaces become less informative. For instance, in high dimensions, the difference 
between the maximum and minimum pairwise distances between random points 
becomes negligible, leading to the “distance concentration” effect. Mathematically, 
if .x1, x2 are random points in .Rd with a fixed distribution, the ratio of the distance 
between these points to the mean distance approaches 1 as . d increases: 

. lim
d→∞

‖x1 − x2‖
E[‖x1 − x2‖] = 1.

This effect makes it challenging to distinguish between points based on distance 
alone, requiring the use of alternative measures or embeddings to capture meaningful 
relationships. 

3. Dimensionality Reduction: To combat the curse of dimensionality, various 
dimensionality reduction techniques, such as Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE), are often employed. 
These methods seek to project high-dimensional data onto a lower-dimensional 
subspace where the data’s essential structure and relationships are preserved. 

In the context of transformers and attention mechanisms, the curse of dimension-
ality underscores the importance of carefully designing the model’s architecture to 
manage the complexity that arises from high-dimensional input spaces. For instance, 
the self-attention mechanism inherently mitigates some of these challenges by focus-
ing on specific subsets of the input data, thereby reducing the effective dimensionality 
that the model needs to process. 

Concentration of Measure 

The concentration of measure phenomenon is another critical aspect of high-
dimensional geometry. It refers to the fact that in high-dimensional spaces, most 
of the mass of a probability distribution tends to concentrate in a small region near
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the mean or median of the distribution. This effect is closely related to the isoperi-
metric inequalities in mathematics, which describe how the “surface area” of a set 
relates to its “volume” in high dimensions. 

To formalize this concept, consider a high-dimensional sphere .Sd−1 in .Rd with 
radius . r . As the dimension. d increases, the volume of the sphere’s equatorial region 
(i.e., the region within a small distance. ε from the equator) becomes overwhelmingly 
large compared to the volume near the poles. More generally, for a Lipschitz function 
. f : Sd−1 → R, the concentration of measure theorem states that for any .ε > 0: 

. P(| f (x) − E[ f ]| ≥ ε) ≤ 2 exp

(

−Cε2

d

)

,

where .C is a constant that depends on the Lipschitz constant of . f . This result 
implies that as the dimensionality. d increases, the probability that a function deviates 
significantly from its expected value decreases exponentially. 

The concentration of measure has profound implications for understanding the 
behavior of functions in high-dimensional spaces: 

1. Robustness of Features: In high-dimensional spaces, most points are close to 
the “average” behavior of a function, meaning that deviations are rare. This property 
can be advantageous in machine learning, where models trained on high-dimensional 
data may exhibit robust performance even under slight perturbations of the input. 

2. Random Projections: The concentration of measure phenomenon justifies the 
use of random projections as a dimensionality reduction technique. The Johnson– 
Lindenstrauss lemma, a direct consequence of measure concentration, states that 
a small set of points in a high-dimensional space can be embedded into a lower-
dimensional space with almost no distortion of pairwise distances. Mathematically, 
for any set of . n points in .Rd and for any .0 < ε < 1, there exists a linear map . f :
R

d → R
k with .k = O(

log n
ε2

) such that 

. (1 − ε)‖xi − x j‖2 ≤ ‖ f (xi ) − f (x j )‖2 ≤ (1 + ε)‖xi − x j‖2

for all points .xi , x j in the set. This result is crucial in reducing the dimensionality of 
data while preserving its essential geometric properties. 

3. Implications for Model Design: In the design of transformers, the concentration 
of measure suggests that high-dimensional feature spaces can be effectively managed 
by focusing on the most significant components of the data. Attention mechanisms 
naturally leverage this principle by assigning higher weights to the most relevant 
parts of the input, thereby concentrating the “measure” of attention on the critical 
features.
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1.4.3 Applications in Transformer Architectures 

The mathematical properties of attention mechanisms, especially when viewed 
through the lens of geometry, symmetry, and metric spaces, offer profound insights 
into the expressivity and robustness of transformer models. By understanding atten-
tion as a mapping within a high-dimensional space, we can explore its implications 
for model expressivity and its role as a metric-preserving map, which are crucial for 
the design and analysis of transformer architectures. 

Implications for Model Expressivity 

Expressivity in the context of transformer architectures refers to the model’s abil-
ity to capture and represent a wide range of functions or patterns within the input 
data. The self-attention mechanism, which lies at the core of transformers, signif-
icantly enhances the model’s expressivity by enabling it to dynamically focus on 
different parts of the input sequence, thereby capturing complex dependencies and 
interactions. 

Mathematically, the expressivity of a model can be related to its capacity to approx-
imate functions within a certain function space. Let .H denote a Hilbert space of 
functions defined on the input space . X , with an associated inner product .〈·, ·〉.  The  
self-attention mechanism can be viewed as an operator .A : H → H, where for any 
function . f ∈ H, the operator .A produces a new function .g = A( f ) that represents 
a weighted combination of . f over the input sequence. This operator is defined by 

. g(xi ) =
n∑

j=1

αi j f (x j ),

where .αi j are the attention weights, computed as 

. αi j = exp(〈qi ,k j 〉/√dk)
∑n

k=1 exp(〈qi ,kk〉/
√
dk)

.

The expressivity of the transformer model is closely related to the ability of . A
to approximate any target function . g within . H. This approximation capability is 
influenced by several factors: 

1. Diversity of Attention Heads: In multi-head attention, multiple attention oper-
ators .A1,A2, . . . ,Ah are applied in parallel, each with different parameteriza-
tions. The combination of these attention heads increases the model’s expressiv-
ity by enabling it to capture different aspects of the input data simultaneously. 
Mathematically, the combined output can be expressed as 

.g(xi ) =
⊕

(A1( f )(xi ),A2( f )(xi ), . . . ,Ah( f )(xi ))Wo,
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where.Wo is a learned weight matrix. The presence of multiple attention heads allows 
the model to approximate more complex functions by effectively increasing the 
dimensionality of the function space .H that the model can represent. 

2. Non-linearity and Depth: The inclusion of non-linear activation functions, such 
as ReLU, and the stacking of multiple layers of self-attention further enhances the 
model’s expressivity. Each layer of the transformer applies a sequence of linear 
and non-linear transformations, which, according to the universal approximation 
theorem, can approximate any continuous function on a compact domain to arbitrary 
accuracy, provided the network is sufficiently deep and wide. 

3. Attention Weight Diversity: The diversity of attention weights.αi j across differ-
ent queries .xi allows the model to focus on different parts of the input sequence for 
different contexts. This adaptability is crucial for capturing long-range dependencies 
and interactions within the input, which are essential for tasks such as translation, 
summarization, and question answering. 

The mathematical implications of these factors suggest that transformers, through 
their attention mechanisms, possess a high degree of expressivity. This allows them 
to model complex relationships within data that would be challenging for models 
lacking such flexible and adaptive attention mechanisms. 

Attention as a Metric-Preserving Map 

Another critical aspect of attention mechanisms in transformer architectures is their 
role as metric-preserving maps. In a metric space.(X, d),  a  m  ap.φ : X → Y is said to 
preserve the metric if it approximately maintains the distances between points, i.e., 
for all .x1, x2 ∈ X ,  we  ha  ve  

. dY (φ(x1), φ(x2)) ≈ dX (x1, x2).

In the context of transformers, we can analyze the attention mechanism as a 
mapping from the space of input embeddings .Rn×d to an output space .Rn×d .  The  
goal is to understand whether and how this mapping preserves the distances (and 
hence the relationships) between the input v ectors. 

Consider the attention mapping.A(Q, K , V ) discussed earlier. We want to explore 
whether this mapping preserves the metric structure of the input space. To do this, 
we can analyze the change in distance between two input vectors .x1 and .x2 under 
the attention transformation. Let .z1 and.z2 be the corresponding output vectors after 
applying the attention mechanism: 

. zi =
n∑

j=1

αi jv j for i = 1, 2.

The distance between the output vectors.z1 and.z2 can be analyzed using a suitable 
norm, such as the Euclidean norm:
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. ‖z1 − z2‖2 =
∥
∥
∥
∥
∥
∥

n∑

j=1

(α1 jv j − α2 jv j )

∥
∥
∥
∥
∥
∥
2

.

If the attention weights .αi j do not vary significantly between .x1 and . x2, then the 
output distance .‖z1 − z2‖2 will be close to the input distance .‖x1 − x2‖2,  imply-
ing that the attention mechanism approximately preserves the metric. This prop-
erty is essential for maintaining the relative relationships between input vectors, 
which is critical for tasks such as language modeling, where preserving the semantic 
relationships between words is c rucial. 

Moreover, when the attention mechanism operates as a metric-preserving map, it 
ensures that the transformed data retains its structural integrity, enabling the model 
to effectively leverage the geometric properties of the input space. This preservation 
of structure is particularly important in high-dimensional spaces, where the relation-
ships between data points can be complex and sensitive to perturbations. In cases 
where the attention mechanism introduces significant non-linearity, the preserva-
tion of the metric may not be exact, but the mechanism can still capture meaning-
ful relationships by focusing on the most relevant dimensions of the input space. 
This selective focus can be understood as a form of adaptive metric preservation, 
where the attention mechanism dynamically adjusts the metric to emphasize the 
most informative features of the data. 

1.5 Tensor Algebra and Notation 

Tensor algebra is a powerful mathematical framework that extends linear algebra 
to higher dimensions, enabling the manipulation of multi-dimensional arrays called 
tensors. Tensors generalize vectors and matrices and are central to many areas of 
mathematics, physics, and machine learning. In the context of transformers, tensors 
are used extensively to represent and process high-dimensional data, such as word 
embeddings and attention scores. 

1.5.1 Introduction to Tensors 

A tensor is a multi-dimensional array of numerical values that generalizes the con-
cepts of scalars, vectors, and matrices. Formally, a tensor of order . k (also known as 
a .k-tensor) over a vector space .V is an element of the tensor product of . k copies 
of . V . In other words, a tensor is a multi-linear map that takes . k vectors from 
.V and returns a scalar. Let .V be a finite-dimensional vector space over a field . F
with a basis .{e1, e2, . . . , en}. A tensor of order . k on .V is an element of the space 
.V⊗k = V ⊗ V ⊗ · · · ⊗ V (with . k factors). If .T is a tensor of order . k, it can be 
expressed as
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. T =
∑

i1,i2,...,ik

Ti1i2...ik ei1 ⊗ ei2 ⊗ · · · ⊗ eik ,

where.Ti1i2...ik are the components of the tensor with respect to the chosen basis, and 
.⊗ denotes the tensor product. The components .Ti1i2...ik form a .k-dimensional array 
(or hypermatrix), where each index . i j ranges from 1 to . n. The simplest tensors are 

1. Scalars (order 0 tensors): A scalar is a single numerical value and can be thought 
of as a tensor with no indices, i.e., a tensor of order 0. 

2. Vectors (order 1 tensors): A vector is a one-dimensional array of numbers, 
represented as .v = ∑

i viei , where .vi are the components of the vector. 
3. Matrices (order 2 tensors): A matrix is a two-dimensional array of numbers, 

represented as .M = ∑
i, j Mi jei ⊗ e j , where .Mi j are the matrix elements. 

Higher-order tensors can be visualized as multi-dimensional arrays, but their 
manipulation requires careful attention to the indices and the rules of tensor algebra. 

Tensor Products and Contractions 

The tensor product is a fundamental operation in tensor algebra that allows the 
construction of higher-order tensors from lower-order ones. Given two tensors . A ∈
V⊗k and.B ∈ W⊗l , their tensor product.A ⊗ B is a tensor of order.k + l in the space 
.V⊗k ⊗ W⊗l .  I  f. A and. B have components.Ai1i2...ik and.Bj1 j2... jl , respectively, then the 
components of the tensor product .A ⊗ B are given by 

. (A ⊗ B)i1i2...ik j1 j2... jl = Ai1i2...ik B j1 j2... jl .

The tensor product operation is bilinear, meaning it satisfies the properties: 

. (A + B) ⊗ C = A ⊗ C + B ⊗ C

. A ⊗ (B + C) = A ⊗ B + A ⊗ C

. α(A ⊗ B) = (αA) ⊗ B = A ⊗ (αB)

for any scalar .α ∈ F. 
Tensor contraction is another essential operation in tensor algebra, analogous to 

matrix multiplication. Contraction reduces the order of a tensor by summing over 
one or more pairs of indices. Given a tensor .T ∈ V⊗k with components .Ti1i2...ik ,  a  
contraction over the indices. i j and. il (where. j �= l) results in a tensor of order. k − 2
with components: 

.Si1...i j−1i j+1...il−1il+1...ik =
∑

i j

Ti1i2...i j ...il ...ik .
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Contraction is a linear operation and is particularly useful in reducing the com-
plexity of tensors, transforming them into lower-dimensional objects while preserv-
ing specific relationships between the indices. For example, consider two tensors 
.A ∈ V ⊗ W and.B ∈ W ∗ ⊗U , where.W ∗ is the dual space of. W . The contraction of 
. A and. B over the common index space.W is a tensor .C ∈ V ⊗U with components: 

. Ciu =
∑

j

Ai j B ju .

This operation is analogous to matrix multiplication, where the product of matrices 
corresponds to the contraction of their associated tensors. 

In the context of self-attention mechanisms in transformers, tensor products and 
contractions are used to compute the attention scores, where the query, key, and 
value tensors interact through tensor operations. These operations allow the model 
to dynamically adjust the focus on different parts of the input sequence, capturing 
complex dependencies and patterns. 

1.5.2 Algebraic Structures in Transformers 

The algebraic structures underlying transformers are crucial for understanding how 
these models manipulate data and achieve their remarkable performance. Among 
these structures, matrix multiplication, Kronecker products, and tensor factorization 
play key roles in the architecture and functioning of transformers, particularly in the 
computation of attention scores and the efficient representation of high-dimensional 
data. These algebraic tools allow transformers to capture complex dependencies, 
exploit symmetries, and manage the computational complexity associated with large-
scale models. 

The Role of Matrix Multiplication 

Matrix multiplication is a fundamental operation in linear algebra and serves as the 
backbone of many computations within transformers. In the context of transformers, 
matrix multiplication is used extensively in the linear transformations applied to input 
data, in the computation of attention scores, and in the propagation of information 
across layers. 

Consider the basic operation in a transformer layer where an input matrix . X ∈
R

n×d , representing a sequence of . n input vectors of dimension . d, is transformed by 
a weight matrix .W ∈ R

d×d ′
to produce an output matrix .Y ∈ R

n×d ′
: 

.Y = XW.
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Here, .Y is the result of applying the linear transformation defined by .W to each 
vector in the sequence . X . This operation is crucial for adjusting the dimensionality 
of the data, allowing the model to project input vectors into different spaces where 
specific patterns or features may be more easily captured. 

In the self-attention mechanism, matrix multiplication plays a central role in the 
computation of attention scores. Given query . Q,  ke  y  . K , and value .V matrices, the 
attention output is computed as 

. Attention(Q, K , V ) = Softmax

(
QK�
√
dk

)

V .

Here,.QK� is a matrix multiplication operation that computes the dot-product atten-
tion scores between queries and keys. The result is an.n × n matrix where each entry 
represents the similarity between a query vector and a key vector. This matrix is then 
normalized using the softmax function, and the result is used to weight the value 
vectors through another matrix multiplication. 

Matrix multiplication in transformers also facilitates the blending of information 
across different parts of the input sequence. By multiplying matrices, the model 
can combine contributions from various elements of the input, effectively allowing 
the model to “attend” to multiple parts of the sequence simultaneously. This ability 
to aggregate information from different sources is essential for tasks that require 
understanding long-range dependencies, such as translation or summarization. 

Moreover, matrix multiplication in transformers is often used in conjunction with 
other algebraic operations, such as the addition of bias terms or the application of non-
linear activation functions, to create more complex and expressive transformations. 
These operations are key to the model’s capacity to learn and represent intricate 
patterns in the data. 

Kronecker Products and Factorization 

The Kronecker product is a powerful tool in tensor algebra that extends the concept 
of matrix multiplication to higher-dimensional structures. It is particularly useful in 
the context of transformers for creating structured and scalable representations of 
data and for factorizing large matrices into more manageable components. 

Given two matrices .A ∈ R
m×n and .B ∈ R

p×q , their Kronecker product . A ⊗ B
is defined as a block matrix of dimensions .mp × nq where each block is a scaled 
version of . B by the corresponding entry in . A: 

.A ⊗ B =

⎛

⎜
⎜
⎜
⎝

a11B a12B . . . a1n B
a21B a22B . . . a2n B

...
...

. . .
...

am1B am2B . . . amn B

⎞

⎟
⎟
⎟
⎠

.
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The Kronecker product inherits properties from matrix multiplication, such as dis-
tributivity over matrix addition and associativity with respect to matrix multiplication. 
However, the Kronecker product also introduces new capabilities, such as the ability 
to model interactions between different dimensions or to create high-dimensional 
tensor representations from lower-dimensional ones. 

In transformers, Kronecker products can be used to efficiently represent and 
manipulate large matrices or tensors that arise in the model. For example, consider 
a situation where the model needs to learn interactions between two sets of features, 
one represented by matrix .A and the other by matrix . B. Instead of explicitly con-
structing a large matrix to capture all pairwise interactions, the Kronecker product 
.A ⊗ B provides a compact and structured way to encode these interactions. 

Factorization techniques based on the Kronecker product are also valuable in 
reducing the computational complexity of transformer models. Matrix factorization 
aims to decompose a large matrix .M into the product of smaller matrices, thereby 
reducing the number of parameters and the computational cost of matrix operations. 
A common factorization approach involves expressing .M as 

. M ≈ A ⊗ B,

where. A and. B are smaller matrices. This decomposition allows the model to approx-
imate large matrix operations using a series of smaller, more efficient operations. In 
the context of transformers, such factorization can be applied to weight matrices, 
attention score matrices, or other components of the model to improve scalability 
without sacrificing performance. 

One specific application of Kronecker product-based factorization is in multi-
head attention, where the attention weights for different heads can be factorized to 
share information across heads while still allowing for individual specialization. This 
approach leads to a more efficient representation of the model’s parameters and can 
help prevent overfitting by reducing the model’s capacity. 

1.5.3 Self-attention Mechanisms 

The central theme is that of computing a weighted combination of input features, 
where the weights reflect the relevance of each feature to the others. Mathemati-
cally, let .X = {x1, x2, . . . , xn} be a sequence of input vectors, where each . xi ∈ R

d

represents a feature vector in a .d-dimensional space. The self-attention mechanism 
transforms this input sequence into an output sequence .Z = {z1, z2, . . . , zn}, where 
each output vector .zi ∈ R

d is a weighted sum of the input vectors. 
To compute the output vectors . zi , the self-attention mechanism uses three matri-

ces: the query matrix . Q, the key matrix . K , and the value matrix . V , each derived 
from the input matrix . X . Specifically, the query, key, and value matrices are defined 
as 

.Q = XWQ, K = XWK , V = XWV ,
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where .WQ,WK ,WV ∈ R
d×dk are learned weight matrices, and .dk is the dimension-

ality of the key vectors. The output vector . zi is then computed as 

. zi =
n∑

j=1

αi jv j ,

where .αi j are the attention weights, defined by 

. αi j = exp(Si j )
∑n

k=1 exp(Sik)
, Si j = 〈qi ,k j 〉√

dk
.

Here, .qi and .k j are the . i th query vector and . j th key vector, respectively, and . Si j
represents the similarity score between.qi and. k j , scaled by the factor. 1√

dk
to mitigate 

the effect of large dot products in high-dimensional spaces. The softmax function 
ensures that the attention weights .αi j sum to 1 for each query vector, providing a 
probabilistic interpretation of the weights. 

The self-attention mechanism can be compactly represented in matrix form as 

. Z = Softmax

(
QK�
√
dk

)

V .

This formulation highlights the core operations involved in self-attention: the 
computation of pairwise similarities between queries and keys (via dot products), 
the normalization of these similarities to obtain attention weights, and the weighted 
aggregation of value vectors to produce the final output. 

Multi-head Self-attention 

The concept of multi-head self-attention extends the basic self-attention mechanism 
by allowing the model to focus on different aspects of the input sequence simul-
taneously. In multi-head self-attention, multiple attention mechanisms (or “heads”) 
operate in parallel, each with its own set of learned weights. This enables the model 
to capture various types of dependencies and relationships within the input data. 

Formally, let .h denote the number of attention heads. For each head . i ,  the  
corresponding query, key, and value matrices are computed as 

. Qi = XWQi , Ki = XWKi , Vi = XWVi ,

where.WQi ,WKi ,WVi ∈ R
d×dk are the learned weight matrices for the . i th head. The 

output of each head is then computed using the self-attention mechanism: 

.Zi = Softmax

(
Qi K�

i√
dk

)

Vi .
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The outputs of the. h attention heads are concatenated and linearly transformed to 
produce the final output: 

. Z =
⊕

(Z1, Z2, . . . , Zh)WO ,

where.WO ∈ R
hdk×d is a learned weight matrix that projects the concatenated output 

back to the original dimensionality . d. 
The advantage of multi-head self-attention lies in its ability to capture diverse 

patterns in the data. Each head can attend to different parts of the input sequence or 
focus on different types of relationships, such as short-range versus long-range depen-
dencies. This parallel processing of multiple attention heads enhances the model’s 
expressivity and allows it to better capture the complexity of the input data. 

1.6 Matrix Calculus in Self-attention 

Matrix calculus is a vital tool in the optimization and analysis of neural networks, 
including transformer models that rely heavily on self-attention mechanisms. The 
ability to compute gradients, Jacobians, and Hessians efficiently is crucial for training 
these models, as these quantities guide the optimization process, ensuring that the 
model learns to represent the underlying data patterns effectively. 

1.6.1 Differentiation of Matrix Functions 

Matrix calculus extends the principles of calculus to functions that take matrices as 
inputs and produce matrices as outputs. In the context of self-attention mechanisms, 
differentiating matrix functions is essential for backpropagation, the algorithm used 
to compute gradients and update model parameters during training. 

Consider a matrix-valued function . f : Rm×n → R
p×q , which maps an input 

matrix .X ∈ R
m×n to an output matrix .Y = f (X) ∈ R

p×q . The derivative of . f with 
respect to .X is a fourth-order tensor that describes how each element of the out-
put matrix .Y changes with respect to each element of the input matrix . X .  How-
ever, in practice, matrix calculus often focuses on specific cases, such as the gradi-
ent, Jacobian, or Hessian, which provide more manageable representations of these 
derivativ es. 

Gradient Computation Techniques 

The gradient of a scalar-valued function . f : Rm×n → R with respect to a matrix . X
is a matrix of partial derivatives, often denoted by .∇X f or . ∂ f

∂X . Each entry of the
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gradient matrix .∇X f is given by 

. (∇X f )i j = ∂ f

∂Xi j
.

In self-attention mechanisms, gradients are required to update the weight matrices 
.WQ,WK ,WV , which are involved in the transformations of the query, key, and value 
matrices. To compute these gradients, one typically relies on matrix calculus rules 
that extend scalar calculus to matrix operations. 

Consider a common matrix function. f (X) = tr(AX), where.A ∈ R
m×n is a fixed 

matrix, and .tr(·) denotes the trace of a matrix. The gradient of . f with respect to . X
is given by 

. ∇X f (X) = A�.

This result follows from the linearity of the trace operator and the fact that the trace 
of a product of matrices is invariant under cyclic permutations, i.e.,.tr(AB) = tr(BA). 
For a more complex function such as the Frobenius norm of a matrix, . f (X) =
‖X‖2F = tr(X�X), the gradient is computed as 

. ∇X‖X‖2F = 2X.

These gradient computation techniques are used in the optimization of self-
attention mechanisms to minimize the loss function during training. For instance, the 
loss function in a transformer model might involve the squared difference between 
the predicted output and the true output, and the gradient of this loss with respect to 
the model’s parameters guides the weight updates. 

Jacobian and Hessian Matrices 

The Jacobian matrix generalizes the gradient to vector-valued functions. For a vector-
valued function . f : Rm×n → R

p, the Jacobian matrix .J f (X) is defined as 

. J f (X) = ∂ f (X)

∂X
∈ R

p×(mn),

where each row of .J f (X) corresponds to the gradient of one component of the 
vector-valued function . f with respect to the elements of . X . 

In the context of self-attention, consider the softmax function used to compute 
attention weights. Let .S(X) be the similarity matrix resulting from the dot product 
of queries and keys, normalized by the softmax function: 

.αi j = exp(Si j )
∑n

k=1 exp(Sik)
.
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The Jacobian of the softmax function .softmax(S) is important for understanding 
how small changes in the similarity scores . S affect the attention weights . α.  The  
Jacobian matrix .Jsoftmax(S) is given by 

. (Jsoftmax(S))i j,kl = αi j
(
δ jk − αik

)
,

where .δ jk is the Kronecker delta. This Jacobian matrix plays a crucial role in the 
backpropagation algorithm, determining how the gradients flow through the softmax 
layer. 

The Hessian matrix further generalizes the concept of the second derivative to 
functions of matrices. For a scalar-valued function . f : Rm×n → R, the Hessian 
matrix .Hf (X) is a block matrix where each block corresponds to the second-order 
partial derivatives with respect to the elements of . X : 

. Hf (X) = ∂2 f (X)

∂X∂X� ∈ R
(mn)×(mn).

The Hessian matrix provides information about the curvature of the function . f , 
which is essential for second-order optimization methods like Newton’s method. 
In self-attention mechanisms, the Hessian can be used to analyze the stability and 
convergence of the training process, as well as to detect saddle points and local 
minima. 

For example, if the loss function . L in a transformer model is highly curved (i.e., 
has a large Hessian), the gradient descent steps might need to be adjusted to ensure 
stable convergence. The Hessian matrix can also help in identifying directions in 
the parameter space that require more precise adjustments, leading to more efficient 
training. 

1.6.2 Optimization and Gradient Flow 

Optimization is a critical component of training neural networks, including trans-
formers with self-attention mechanisms. The process involves adjusting model 
parameters to minimize a loss function, which measures the difference between 
the model’s predictions and the actual data. Gradient flow, convergence analysis, and 
learning rate schedules are central to understanding how effectively and efficiently 
a model learns during training. 

Analysis of Convergence 

Convergence analysis in the context of gradient-based optimization refers to the study 
of how and when an iterative optimization algorithm approaches a local or global
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minimum of the loss function. For a transformer model utilizing self-attention mech-
anisms, the goal is to ensure that the parameters converge to values that minimize 
the loss function, leading to optimal model performance. 

Let .L(θ) be the loss function, where .θ ∈ R
d represents the vector of model 

parameters. The gradient descent algorithm updates the parameters iteratively as 
follows: 

. θt+1 = θt − η∇L(θt ),

where.η > 0 is the learning rate, and.∇L(θt ) is the gradient of the loss function with 
respect to . θ at iteration . t . 

For convergence of gradient descent to a local minimum, certain conditions on 
the loss function .L(θ) and the learning rate . η must be satisfied: 

1. Smoothness: The loss function.L(θ) is typically assumed to be smooth, meaning 
that it has Lipschitz-continuous gradients. Formally, there exists a constant . L > 0
such that 

. ‖∇L(θ1) − ∇L(θ2)‖ ≤ L‖θ1 − θ2‖ ∀θ1, θ2 ∈ R
d .

This smoothness condition ensures that the gradient does not change too rapidly, 
which is crucial for the stability of the gradient descent algorithm. 

2. Convexity: If the loss function.L(θ) is convex, meaning that for all . θ1, θ2 ∈ R
d

and .λ ∈ [0, L]: 

. 1(λθ1 + (1 − λ)θ2) ≤ λL(θ1) + (1 − λ)L(θ2),

then gradient descent is guaranteed to converge to a global minimum. However, in 
the case of deep neural networks, the loss function is typically non-convex, and the 
convergence analysis focuses on local minima or saddle points. 

3. Learning Rate: The learning rate . η plays a critical role in convergence. If . η is 
too large, the algorithm may overshoot the minimum and diverge; if it is too small, 
the convergence will be slow. For convergence, . η must satisfy the condition: 

. 0 < η <
2

L
,

where .L is the Lipschitz constant of the gradient. Under this condition, gradient 
descent can be shown to converge to a stationary point, where .∇L(θ) = 0. 

The rate at which gradient descent converges depends on the properties of the 
loss function. For a convex and smooth loss function, the convergence rate is lin-
ear, meaning that the distance to the minimum decreases geometrically with each 
iteration: 

. L(θt ) − L(θ∗) ≤ (1 − ημ)t (L(θ0) − L(θ∗)),

where .θ∗ is the optimal parameter vector and .μ > 0 is a parameter related to the 
strong convexity of .L(θ). In practice, due to the non-convexity of neural network
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loss functions, the convergence rate can be slower, and additional techniques such 
as momentum or adaptive learning rates may be used to accelerate convergence. 

Learning Rate Schedules 

The learning rate . η is a hyperparameter that significantly impacts the efficiency 
and success of the optimization process. A fixed learning rate may not be optimal 
throughout the entire training process, leading to the use of learning rate schedules 
that adjust . η dynamically during training. 

Types of Learning Rate Schedules: 
1. In step decay, the learning rate is reduced by a constant factor . γ after a fixed 

number of epochs. Formally, if.η0 is the initial learning rate, the learning rate at epoch 
. t is given by 

. ηt = η0 · γ � t
T �,

where .T is the number of epochs after which the learning rate is decayed and . �·�
denotes the floor function. This schedule helps in making large steps initially to 
escape from local minima or saddle points, followed by smaller steps as the algorithm 
approaches a minimum. 

2. Exponential decay continuously decreases the learning rate according to an 
exponential function: 

. ηt = η0 · exp(−λt),

where .λ > 0 is the decay rate. This schedule provides a smooth reduction in 
the learning rate, which can be advantageous when fine-tuning the model near a 
minimum. 

3. Polynomial decay reduces the learning rate according to a polynomial function 
of the epoch number: 

. ηt = η0 ·
(

1 − t

Tmax

)p

,

where.Tmax is the total number of training epochs and. p is the power of the polynomial. 
This schedule allows for a gradual reduction in the learning rate, which can be 
particularly useful in the later stages of training. 

4. Cosine annealing gradually reduces the learning rate following the cosine 
function: 

. ηt = ηmin + 1

2
(ηmax − ηmin)

(

1 + cos

(
tπ

Tmax

))

,

where .ηmin and .ηmax are the minimum and maximum learning rates, respec-
tively. Cosine annealing allows for a non-monotonic reduction in the learning rate, 
potentially allowing the optimization process to escape from shallow local minima. 

5. Warm restarts involve periodically resetting the learning rate to a higher value 
after certain intervals, allowing the optimization process to explore new regions of
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the parameter space. This approach can be combined with any of the above schedules, 
leading to a cyclical learning rate schedule that alternates between exploration and 
exploitation phases. 

Implications: The choice of learning rate schedule can have significant impli-
cations for the convergence and final performance of the model. A well-chosen 
schedule can accelerate convergence, prevent the optimization from getting stuck 
in poor local minima, and lead to better generalization. Conversely, an inappropri-
ate schedule may cause the optimization to converge too slowly or even diverge. 
The mathematical analysis of learning rate schedules often involves examining the 
behavior of the gradient flow under different schedules, using tools from differential 
equations and dynamical systems. For instance, the convergence of gradient descent 
under a decaying learning rate schedule can be analyzed using Lyapunov functions, 
which provide a measure of the stability of the optimization process. 

1.7 Positional Encodings: A Mathematical Perspective 

Positional encodings are essential for certain tasks in transformer models because 
they provide a way to incorporate the order of elements in a sequence, which is crucial 
for tasks like language modeling and translation. Unlike recurrent neural networks, 
transformers process input sequences in parallel, and thus require a method to inject 
sequential information into the model. This is achieved through positional encodings, 
which are often formulated using sinusoidal functions, providing a natural connection 
to Fourier analysis. 

1.7.1 Fourier Analysis of Positional Encodings 

Fourier analysis is a powerful mathematical tool that decomposes functions into their 
constituent frequencies. It is particularly useful for analyzing periodic functions, 
which are central to the construction of positional encodings in transformers. The 
use of sinusoidal functions in positional encodings can be understood through the 
lens of Fourier series and transforms, which allow us to express a function as a sum 
of sines and cosines, capturing both local and global features of the sequence. 

Fourier Series and Transforms 

The Fourier series is a way to represent a periodic function . f (x) defined on the 
interval .[0, 2π ] (or equivalently on any interval .[a, a + 2π ]) as an infinite sum of 
sines and cosines. Specifically, if . f (x) is a periodic function with period .2π , its 
Fourier series is given by
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. f (x) = a0
2

+
∞∑

n=1

(an cos(nx) + bn sin(nx)) ,

where the coefficients .an and .bn are determined by 

. an = 1

π

∫ 2π

0
f (x) cos(nx) dx, bn = 1

π

∫ 2π

0
f (x) sin(nx) dx .

The Fourier series expresses the function as a superposition of harmonics, where 
each term corresponds to a specific frequency component of the original function. For 
functions that are not inherently periodic, the Fourier transform generalizes this idea 
to express the function in terms of continuous frequencies. The Fourier transform of 
a function . f (x) is defined as 

. f̂ (ξ) =
∫ ∞

−∞
f (x)e−2π iξ x dx,

where . f̂ (ξ) represents the amplitude of the frequency component . ξ . The inverse 
Fourier transform allows us to reconstruct the original function from its frequency 
components: 

. f (x) =
∫ ∞

−∞
f̂ (ξ)e2π iξ x dξ.

In the context of positional encodings, the use of Fourier series or transforms is 
motivated by the desire to represent the position of each element in a sequence as 
a combination of sinusoidal functions. These functions naturally encode positional 
information in a way that is smooth and periodic, capturing the relative positions of 
elements in the sequence. 

Periodic Functions and Signal Processing 

The sinusoidal functions used in positional encodings are periodic, meaning they 
repeat their values at regular intervals. This periodicity is particularly useful in rep-
resenting the positions within a sequence, as it allows the model to capture both 
local and global positional relationships through different frequency components. In 
signal processing, periodic functions like sines and cosines are fundamental because 
they serve as the basic building blocks for more complex signals. By decomposing 
a signal into its constituent frequencies using Fourier analysis, we can analyze and 
manipulate the signal in an intuitive way. 

In transformers, the positional encoding for a given position . p and dimension . i
is typically defined as 

.PE(p, 2i) = sin
( p

100002i/d

)
, PE(p, 2i + 1) = cos

( p

100002i/d

)
,



46 1 Foundations of Representation Theory in Transformers

where . d is the dimensionality of the model. These encodings are designed so that 
each dimension of the positional encoding corresponds to a different frequency 
component, with higher dimensions encoding higher frequencies. 

The periodic nature of these functions ensures that positional encodings are 
smooth and continuous, allowing the model to generalize well to unseen positions. 
Moreover, the combination of sines and cosines at different frequencies enables 
the model to capture a wide range of positional relationships, from short-range 
dependencies to long-range interactions. 

Example: Consider a simple sequence of positions .p = 0, 1, 2, . . . , N − 1.  The  
positional encoding for the position . p can be represented as a vector: 

. PE(p) =
[

sin

(
p

100000/d

)

, cos

(
p

100000/d

)

, sin

(
p

100002/d

)

, cos

(
p

100002/d

)

, . . .

]

.

This encoding scheme ensures that each position is mapped to a unique point in 
the high-dimensional space, with the difference between positions being captured 
by the differences in their sinusoidal components. The periodicity of these functions 
means that the encodings will eventually repeat, which can be advantageous for tasks 
that involve cyclic or repetitive patterns. 

The use of Fourier analysis in positional encodings highlights the deep connection 
between signal processing and neural networks, where the goal is to encode infor-
mation in a way that preserves important features while allowing for efficient com-
putation and generalization. By leveraging the mathematical properties of Fourier 
series and transforms, transformers can effectively represent the order of elements 
in a sequence, enabling them to perform well on a wide range of tasks that require 
understanding of sequential data. 

1.7.2 Lie Groups and Lie Algebras 

Lie groups and Lie algebras [ 10, 19, 21, 35, 59] form a deep mathematical framework 
for understanding continuous symmetries, which are prevalent in many areas of math-
ematics and physics. Their application to transformers, particularly in understanding 
symmetries in data and model architecture, provides a foundation for analyzing and 
designing these models. Lie groups are mathematical structures that combine the 
properties of groups (algebraic operations) with the properties of smooth manifolds 
(geometric structures). They are used to describe continuous symmetries, such as 
rotations, translations, and scalings, which are crucial in many areas of mathematics 
and physics. The corresponding Lie algebras provide a linearized approximation of 
these symmetries, making them powerful tools for analysis [ 24, 31].
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Basic Definitions and Properties 

A Lie group is a group .G that is also a smooth manifold, meaning that the group 
operations (multiplication and inversion) are smooth (differentiable) maps. Formally, 
a Lie group .G is a set with two operations: 

1. A binary operation (group multiplication) .· : G × G → G, which is smooth. 
2. An inversion operation .inv : G → G, .g �→ g−1, which is also smooth. 

Example: The set of .n × n invertible matrices .GL(n,R), known as the general 
linear group, is a Lie group. The group operations are matrix multiplication and 
matrix inversion, both of which are smooth maps on the manifold of.n × n matrices. 

The Lie algebra associated with a Lie group.G is a vector space that captures the 
infinitesimal symmetries of the group. It can be thought of as the tangent space to 
the Lie group at the identity element. The Lie algebra . g of a Lie group .G is defined 
as the set of all tangent vectors at the identity element of. G, with a bilinear operation 
called the Lie bracket: 

. g = TeG, [X,Y ] = ∂

∂t

∣
∣
∣
∣
t=0

(exp(t X) · exp(tY ) · exp(−t X) · exp(−tY )) ,

where .exp : g → G is the exponential map that connects the Lie algebra to the Lie 
group. 

Properties: 

1. Closure: For any two elements .X,Y ∈ g, their Lie bracket .[X,Y ] is also in . g. 
2. Bilinearity: The Lie bracket is bilinear, meaning that for any scalars.a, b ∈ R and 

elements .X,Y, Z ∈ g: 

. [aX + bY, Z ] = a[X, Z ] + b[Y, Z ], [Z , aX + bY ] = a[Z , X ] + b[Z ,Y ].

3. Jacobi Identity: The Lie bracket satisfies the Jacobi identity: 

. [X, [Y, Z ]] + [Y, [Z , X ]] + [Z , [X,Y ]] = 0.

4. Antisymmetry: The Lie bracket is antisymmetric: 

. [X,Y ] = −[Y, X ].

These properties define the structure of the Lie algebra, making it a fundamental 
object in the study of continuous symmetries.
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Representations of Lie Groups 

A representation of a Lie group .G on a vector space .V is a homomorphism . ρ :
G → GL(V ) from .G to the general linear group .GL(V ) of all invertible linear 
transformations on . V . This representation allows the elements of the Lie group to 
be expressed as matrices, enabling the study of group actions in a linear algebraic 
framework. The corresponding representation of a Lie algebra. g is a homomorphism 
.φ : g → End(V ), where .End(V ) is the space of all linear endomorphisms (linear 
maps from.V to itself). The representation . φ satisfies 

. φ([X,Y ]) = φ(X)φ(Y ) − φ(Y )φ(X)

for all .X,Y ∈ g. 
Example: Consider the Lie group .SO(3), the group of rotations in three-

dimensional space. The corresponding Lie algebra .so(3) consists of all skew-
symmetric .3 × 3 matrices. A representation of .SO(3) on .R3 is given by the action 
of rotation matrices on vectors in .R3. The corresponding representation of .so(3) is 
given by the action of the skew-symmetric matrices on vectors in .R

3. 
The importance of representations in the context of Lie groups and Lie algebras 

lies in their ability to linearize the action of groups, making it easier to study their 
properties and symmetries. Representations allow us to express abstract group ele-
ments as concrete matrices, enabling the use of linear algebra tools to analyze group 
actions. 

Applications to Transformers 

In the context of transformers, Lie groups and their representations can be used to 
model and exploit symmetries in the data and the model architecture. For example: 

1. Symmetries in Data: Many types of data, such as images, signals, and sequences, 
exhibit symmetries that can be modeled using Lie groups. For instance, rotational 
symmetry in images can be described by the Lie group .SO(2), and translational 
symmetry can be described by the Euclidean group. By understanding and incor-
porating these symmetries into the model, transformers can be designed to be more 
robust and efficient. In natural language processing, certain grammatical structures 
exhibit symmetries that can be modeled using Lie groups. For example, the sym-
metry between active and passive voice in a sentence can be represented as a group 
action that transforms one structure into the other. 

2. Symmetries in Model Architecture: The attention mechanism in transformers 
can be analyzed through the lens of Lie groups, particularly in understanding how 
different transformations of the input data (such as rotations, translations, or per-
mutations) affect the output of the model. By designing the attention mechanism 
to be equivariant or invariant under certain group actions, the model can be made 
more robust to these transformations. The concept of Lie algebraic layers in neural 
networks, where the transformations applied in each layer correspond to elements of
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a Lie algebra, provides a framework for designing architectures that respect certain 
symmetries and have desirable properties, such as equivariance or invariance. 

Example: Consider a transformer model designed for image processing. If the 
input images exhibit rotational symmetry, the model can be made equivariant to 
rotations by incorporating a representation of the rotation group .SO(2) into the 
attention mechanism. This can be achieved by designing the attention weights to be 
invariant under rotations or by using Lie algebraic layers that respect the rotational 
symmetry of the data. 

1.7.3 Harmonic Analysis on Groups 

Harmonic analysis on groups extends the ideas of Fourier analysis to more general 
settings, where the underlying space is not the real line or Euclidean space but rather 
a group, often a Lie group. This extension is crucial for understanding how functions 
can be decomposed into basic, symmetric components, particularly in the context 
of rotational symmetries and other transformations. The tools of harmonic analysis, 
such as spherical harmonics and Wigner-D functions, provide a deep mathematical 
framework for studying symmetries in data, which can be exploited in transformer 
architectures to enhance model expressivity and robustness. Harmonic analysis on 
groups involves representing functions defined on a group as a sum or integral of 
basic functions that respect the group’s structure. This approach generalizes classical 
Fourier analysis to functions defined on more complex domains, such as spheres 
or rotation groups. The study of such representations is fundamental in physics, 
chemistry, and signal processing, and has important implications in machine learning, 
particularly in understanding how symmetries can be incorporated into models like 
transformers. 

Spherical Harmonics 

Spherical harmonics [ 27, 44] are special functions defined on the surface of a sphere 
that form an orthogonal basis for the space of square-integrable functions on the 
sphere . S2. They arise naturally in the solution of partial differential equations, such 
as Laplace’s equation, in spherical coordinates. Mathematically, spherical harmonics 
are the eigenfunctions of the Laplace operator on the sphere [ 1, 3]. 

Let .Ym
� (θ, φ) denote the spherical harmonic of degree . � and order . m, where 

.θ ∈ [0, π ] is the polar angle, and .φ ∈ [0, 2π ] is the azimuthal angle. The spherical 
harmonics .Ym

� are defined as 

.Ym
� (θ, φ) =

√
(2� + 1)(� − m)!

4π(� + m)! Pm
� (cos θ)eimφ,
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where .Pm
� (x) are the associated Legendre polynomials, defined as 

. Pm
� (x) = (−1)m(1 − x2)m/2 dm

dxm
P�(x)

with.P�(x) being the Legendre polynomials of degree. �. The indices. � and.m satisfy 
.� ≥ 0 and .−� ≤ m ≤ �. 

Properties of Spherical Harmonics: 
1. Orthogonality: Spherical harmonics satisfy an orthogonality condition over the 

sphere: 

. 

∫ 2π

0

∫ π

0
Ym

� (θ, φ)Ym ′
�′ (θ, φ) sin θ dθ dφ = δ��′δmm ′ ,

where .δ��′ and.δmm ′ are Kronecker deltas, and the bar denotes complex conjugation. 
2. Completeness: Any square-integrable function . f (θ, φ) on the sphere can be 

expanded as a series of spherical harmonics: 

. f (θ, φ) =
∞∑

�=0

�∑

m=−�

cm� Y
m
� (θ, φ),

where the coefficients .cm� are given by the inner product: 

. cm� =
∫ 2π

0

∫ π

0
f (θ, φ)Ym

� (θ, φ) sin θ dθ dφ.

Spherical harmonics are particularly useful in scenarios where the data exhibits 
rotational symmetry, such as in 3D computer vision or molecular modeling. In trans-
former models, incorporating spherical harmonics can help the model process and 
recognize patterns that are invariant under rotations, leading to better generalization 
and robustness. For example, when dealing with 3D data, a transformer model can 
use spherical harmonics to encode the rotational properties of the input, allowing the 
attention mechanism to focus on features that are important regardless of the object’s 
orientation. This approach leverages the inherent symmetry of the data, making the 
model more efficient and effective. 

Wigner-D Functions 

Wigner-D functions [ 60, 61] generalize the concept of spherical harmonics to more 
complex group actions, particularly in the context of the rotation group.SO(3).  They  
are used to represent the rotations of quantum states and are essential in the study of 
angular momentum in quantum mechanics. In harmonic analysis, Wigner-D func-
tions provide a way to express the action of the rotation group on functions defined 
on the sphere [ 12, 17].



1.8 Geometric Structures in Transformers 51

Let .D j
mm ′(α, β, γ ) denote the Wigner-D function for a rotation parameterized by 

Euler angles.(α, β, γ ), where. j is the total angular momentum quantum number, and 
.m,m ′ are magnetic quantum numbers. The Wigner-D function is defined as 

. D j
mm ′(α, β, γ ) = e−imαd j

mm ′(β)e−im ′γ ,

where .d j
mm ′(β) are the Wigner small d-matrices, which depend only on the angle . β. 

These small d-matrices are defined by 

. d j
mm′ (β) =

∑

k

(−1)k
√

( j + m)!( j − m)!( j + m′)!( j − m′)!
( j + m − k)!( j − m′ − k)!k!(k + m′ − m)!

(

cos
β

2

)2 j+m−m′−2k (

sin
β

2

)2k+m′−m

.

The Wigner-D functions satisfy important orthogonality relations: 

. 

∫ 2π

0

∫ π

0

∫ 2π

0
D j

mm ′(α, β, γ )D j ′
m ′′m ′′′(α, β, γ ) dα dβ dγ = 8π2

2 j + 1
δ j j ′δmm ′′δm ′m ′′′ .

Wigner-D functions are essential for representing and analyzing data that is sub-
ject to rotations, particularly in 3D spaces. In transformer models, these functions 
can be used to design attention mechanisms that are invariant to rotations, which 
is critical in fields like robotics, molecular dynamics, and computer graphics. For 
instance, in a transformer model designed to process 3D point clouds, Wigner-D 
functions can be used to ensure that the attention mechanism correctly accounts for 
the rotational symmetries of the input data. By incorporating Wigner-D functions into 
the model, one can achieve rotational invariance, meaning that the model’s output 
remains consistent regardless of how the input is rotated. 

The use of Wigner-D functions and spherical harmonics in transformers extends 
the model’s capability to understand and exploit the symmetries inherent in the 
data. These tools provide a mathematical framework for analyzing how the model 
processes data with continuous symmetries, leading to more robust and intelligent 
architectures. 

1.8 Geometric Structures in Transformers 

The geometric structures underlying transformer models, particularly in the context 
of embedding spaces and manifolds, play a crucial role in how these models represent 
and process data. Understanding these structures from a mathematical perspective 
allows us to analyze and improve the way transformers learn and utilize these embed-
dings, especially in high-dimensional spaces where traditional Euclidean intuition 
may fail. The themes of geometry, symmetry, and intelligence are central to this 
exploration.
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1.8.1 Embedding Spaces and Manifolds 

In machine learning, embeddings are representations of objects (such as words, 
images, or nodes in a graph) as vectors in a high-dimensional space. These embedding 
spaces are often structured in a way that reflects the relationships between the objects 
they represent. When the data has an underlying geometric or topological structure, it 
is useful to think of the embedding space as a manifold—a smooth, curved space that 
locally resembles Euclidean space but may have a more complex global structure. 

Manifold Learning 

Manifold learning [ 8, 49, 56] is a branch of machine learning and data science 
that focuses on identifying and exploiting the low-dimensional manifold structure 
within high-dimensional data. The idea is that although the data may lie in a high-
dimensional space, it is often constrained to a lower-dimensional manifold within 
that space [ 16, 53]. 

A manifold .M of dimension . d is a topological space that locally resembles .Rd . 
Formally, for every point.p ∈ M , there exists a neighborhood.U ⊆ M and a homeo-
morphism (a continuous bijection with a continuous inverse).ϕ : U → R

d . This map 
. ϕ is called a chart, and the collection of all such charts.{(Ui , ϕi )} that cover.M forms 
an atlas for the manifold. 

Example: Consider the unit circle .S1 as a manifold embedded in .R
2. Locally, the 

circle resembles the real line .R
1, and it can be covered by two charts that map parts 

of the circle to open intervals on the real line. 
Manifold learning techniques aim to discover the underlying manifold structure 

from high-dimensional data. Two popular methods include 
1. Isomap: Isomap seeks to preserve the geodesic distances between data points. 

Geodesic distance is the shortest path between two points on a manifold, taking into 
account the curvature of the space. Isomap first constructs a neighborhood graph 
of the data, approximates the geodesic distances, and then applies classical multi-
dimensional scaling (MDS) to find a low-dimensional embedding that preserves 
these distances. 

Given a dataset .X = {x1, x2, . . . , xn}, construct a graph .G = (V, E) where each 
vertex .vi corresponds to a data point .xi and edges .(vi , v j ) are weighted by the 
Euclidean distance.‖xi − x j‖ if .x j is among the.k-nearest neighbors of . xi . Compute 
the shortest path distances.dG(xi , x j ) on this graph, which approximate the geodesic 
distances on the manifold. Apply MDS to find a low-dimensional embedding. Y that 
minimizes 

. 

∑

i, j

(
dG(xi , x j ) − ‖yi − y j‖

)2
,

where .yi and .y j are the corresponding points in the low-dimensional embedding.
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2. Locally Linear Embedding (LLE): LLE preserves the local linear structure of 
the data by assuming that each data point and its neighbors lie on or near a locally 
linear patch of the manifold. The algorithm seeks a low-dimensional embedding that 
preserves these local relationships. 

For each data point . xi , find weights .wi j that best reconstruct .xi as a linear 
combination of its neighbors: 

. min
w

∑

i

∥
∥
∥
∥
∥
∥
xi −

∑

j

wi j x j

∥
∥
∥
∥
∥
∥

2

, subject to
∑

j

wi j = 1.

Then, find a low-dimensional embedding .Y = {y1, y2, . . . , yn} that preserves 
these reconstruction weights: 

. min
Y

∑

i

∥
∥
∥
∥
∥
∥
yi −

∑

j

wi j y j

∥
∥
∥
∥
∥
∥

2

.

These manifold learning techniques are powerful because they reveal the intrinsic 
geometry of the data, which can be crucial for tasks like dimensionality reduction, 
visualization, and unsupervised learning. 

In the context of transformers, manifold learning can be applied to the design 
of embedding spaces, particularly when the data exhibits a non-trivial geometric 
structure. For instance, word embeddings in natural language processing often lie 
on a low-dimensional manifold within the high-dimensional space in which they 
are embedded. By understanding this manifold structure, one can design more effi-
cient and effective embedding layers that capture the essential relationships between 
words or other data points. Moreover, attention mechanisms in transformers can be 
interpreted as a form of manifold learning, where the goal is to learn a mapping 
from the input sequence to a manifold that captures the relevant relationships for the 
task at hand. This perspective can lead to new insights into how to design attention 
mechanisms that better exploit the underlying geometry of the data. 

Geometry of High-Dimensional Embeddings 

High-dimensional embeddings are central to transformer models, as they allow 
the model to represent complex data in a form that can be processed by the self-
attention mechanism. However, working in high-dimensional spaces introduces 
unique challenges, particularly related to the geometry of these spaces. 

Curse of Dimensionality: As the dimensionality of the embedding space increases, 
many aspects of geometry behave counterintuitively. For example, the volume of a 
high-dimensional sphere becomes concentrated near its surface, and the distance 
between randomly chosen points tends to become uniform. This phenomenon is
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known as the curse of dimensionality. Mathematically, consider a .d-dimensional 
Euclidean space .R

d . The volume of a ball of radius . r in this space is given by 

. Vd(r) = πd/2rd

�
(
d
2 + 1

) ,

where. � is the Gamma function. As. d increases, the volume.Vd(r) grows rapidly, but 
the volume within any small distance. ε from the surface of the ball also grows, mean-
ing that most of the volume is near the boundary. This has implications for nearest-
neighbor search, clustering, and other tasks that rely on geometric relationships in 
high-dimensional spaces. 

The geometry of high-dimensional embeddings in transformers is crucial for 
understanding how the model processes and transforms data. For example, the self-
attention mechanism in transformers can be seen as a process of mapping high-
dimensional embeddings to a lower-dimensional space (or manifold) where the rele-
vant relationships between data points are more apparent. In this context, the choice 
of embedding space and the way embeddings are learned and manipulated can signif-
icantly impact the model’s performance. For instance, the attention mechanism may 
need to account for the concentration of measure to avoid issues where all attention 
scores become similar, leading to a loss of discriminative power. One way to address 
these challenges is to design embedding spaces with explicit geometric structures, 
such as hyperbolic spaces, which have been shown to better capture hierarchical 
relationships in data. Hyperbolic embeddings can lead to more effective attention 
mechanisms, particularly in tasks that involve tree-like structures or other forms of 
hierarchical data. 

1.8.2 Symmetries and Transformations 

Symmetry plays a fundamental role in mathematics and physics, providing a pow-
erful framework for understanding the invariance and transformation properties of 
systems. In the context of transformers and machine learning, symmetries can be 
exploited to design models that are robust, efficient, and capable of generalizing 
well to unseen data. This section explores the mathematical foundation of symme-
tries, focusing on group actions on manifolds and their applications in transformer 
architectures.
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Group Actions on Manifolds 

A group action is a formal way of describing how the elements of a group .G sys-
tematically “act” on the elements of a set . M , which in this context is often a mani-
fold [ 9, 11, 36, 43]. Group actions provide a way to model symmetries and transfor-
mations of geometric objects. Formally, a group action of a group .G on a manifold 
.M is a map .φ : G × M → M that satisfies the following properties: 

1. Identity: The identity element . e of .G acts as the identity transformation on. M , 
i.e., for all .x ∈ M : 

. φ(e, x) = x .

2. Compatibility: For all .g, h ∈ G and .x ∈ M : 

. φ(g, φ(h, x)) = φ(gh, x).

When a group .G acts on a manifold . M , it induces a structure on .M that reflects 
the symmetries of . G. The orbits of this action, which are the sets of points in.M that 
can be reached from one another by the action of elements in. G, provide insight into 
the geometry of . M . 

Example: Consider the rotation group .SO(2), which consists of all rotations in 
the plane. This group acts on the 2D Euclidean space .R

2 by rotating vectors around 
the origin. For a point .x ∈ R

2, the action of a rotation .Rθ by an angle . θ is given by 

. φ(Rθ , x) = Rθ x =
(
cos θ − sin θ

sin θ cos θ

)(
x1
x2

)

.

This action preserves the distance from the origin, reflecting the rotational 
symmetry of the Euclidean space. 

Orbits and Stabilizers: For a point .x ∈ M , the orbit of . x under the action of .G is 
the set: 

. Orb(x) = {φ(g, x) | g ∈ G}.

The stabilizer (or isotropy group) of . x is the set of elements in .G that leave . x
fixed: 

. Stab(x) = {g ∈ G | φ(g, x) = x}.

The orbit-stabilizer theorem states that there is a bijection between the orbit of 
. x and the coset space .G/Stab(x), which provides a powerful way to understand the 
structure of the manifold .M in terms of the group . G. 

Theorem 1.4 (Orbit-Stabilizer Theorem) Let .G be a group acting on a set . M, and 
let .x ∈ M. Then there is a bijection between the orbit of . x and the coset space 
.G/Stab(x), given by 

.φ : G/Stab(x) → Orb(x), g Stab(x) �→ φ(g, x),
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where .Stab(x) is the stabilizer of . x. 

Group actions are fundamental in differential geometry, where they are used to 
study the symmetry properties of manifolds. For example, the action of the rota-
tion group .SO(3) on the 2-sphere .S2 describes the rotational symmetries of the 
sphere. These symmetries can be leveraged in machine learning models, particularly 
in tasks involving data with inherent geometric structures, such as 3D point clouds 
or molecular data. 

Applications in Transformer Architectures 

In transformer architectures, understanding and incorporating symmetries through 
group actions can lead to more robust and efficient models. This is especially rel-
evant when dealing with data that possesses intrinsic symmetries, such as images, 
sequences, or graphs. 

1. Equivariance and Invariance: Equivariance and invariance are crucial concepts 
in the design of neural networks, including transformers. A function. f : M → N is 
said to be equivariant with respect to a group action if, for all .g ∈ G and .x ∈ M , 

. f (φ(g, x)) = ψ(g, f (x)),

where .ψ : G × N → N is the corresponding action on the target space . N .  I  f  
.ψ(g, f (x)) = f (x) for all .g ∈ G, then . f is invariant under the group action. 

Example: In the context of image processing, if .G is the group of translations, 
a convolutional layer in a neural network is designed to be translation-equivariant, 
meaning that translating the input image results in a corresponding translation of the 
output feature map. This property is critical for tasks where the position of features 
should not affect their detection. 

In transformers, the self-attention mechanism can be designed to be equivariant 
to certain transformations of the input. For example, if the input data has a known 
symmetry, such as rotational or permutation symmetry, the attention mechanism can 
be modified to respect this symmetry. Let.X = {x1, x2, . . . , xn} be the input sequence, 
and let. G be a group acting on this sequence, such as a permutation group that shuffles 
the elements of. X . The self-attention mechanism can be made equivariant to the group 
action if, for a group element .g ∈ G, 

. Attention(φ(g, Q), φ(g, K ), φ(g, V )) = φ(g,Attention(Q, K , V )),

where.Q, K , V are the query, key, and value matrices, and.φ(g, ·) denotes the action 
of. g on these matrices. This equivariance ensures that the model’s output is consistent 
with the symmetries of the input, which can improve generalization and robustness, 
especially in tasks where such symmetries are present.
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2. Symmetry-Aware Transformers: In tasks involving structured data, such as 
graphs or 3D objects, symmetry-aware transformers can be designed by incorpo-
rating group representations and equivariant layers into the model. For instance, in 
a graph transformer, the attention mechanism can be designed to be equivariant to 
node permutations, ensuring that the model’s output is invariant to the ordering of 
the nodes. To implement a symmetry-aware transformer, one can use tools from rep-
resentation theory, where the input features are mapped into a space where the group 
.G acts linearly. The attention weights and output features are then computed in a 
way that respects the group action, ensuring equivariance or invariance as required. 

Example: For a transformer designed to process 3D molecular structures, the 
model can incorporate the rotational symmetries of the molecule by representing 
the atomic positions using spherical harmonics or Wigner-D functions (as discussed 
in the previous section). The attention mechanism can then be made equivariant to 
rotations, allowing the model to correctly account for the orientation of the molecule. 

3. Enhancing Model Robustness: By explicitly incorporating symmetries into 
transformer architectures, one can enhance the model’s robustness to transformations 
of the input data. This approach is particularly useful in domains where the data 
exhibits natural symmetries, such as robotics, physics, and computer vision. 

1.8.3 Implications for Model Design 

Incorporating geometric principles into the design of transformer architectures can 
significantly enhance their performance and robustness, especially in tasks where the 
data exhibits inherent symmetries and geometric structures. By embedding geomet-
ric priors into model architectures and ensuring invariances to transformations like 
rotations and translations, we can create models that are not only more aligned with 
the underlying data but also more capable of generalizing to new, unseen scenarios. 

Geometric Priors in Model Architectures 

Geometric priors are assumptions about the underlying structure or symmetry of the 
data that can be embedded into the architecture of a model. These priors leverage 
known properties of the data, such as its invariance under certain transformations, 
to constrain the model’s hypothesis space, leading to more efficient learning and 
improved generalization. 

Consider a dataset .X where each data point .x ∈ X lies on or near a manifold 
.M ⊂ R

d . A geometric prior can be encoded in the model by designing the model’s 
architecture to respect the structure of. M . For example, if .M has a known symmetry 
group . G, such as the rotation group .SO(3), the model can be constructed to be 
equivariant to the actions of . G. 

Example: Let .G = SO(3) act on .R
3, representing rotations in three-dimensional 

space. A model designed to process 3D point clouds can incorporate a geometric prior
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by ensuring that its operations are equivariant to . G. Specifically, if . f : R3 → R
n is 

a function representing a layer in the model, we require that for any rotation . R ∈ G
and any point .x ∈ R

3: 
. f (Rx) = R f (x).

This ensures that the model’s output respects the rotational symmetry of the input 
data. 

Geometric Deep Learning: Geometric priors are central to the field of geometric 
deep learning, where the goal is to design neural networks that operate on non-
Euclidean domains such as graphs, manifolds, and other geometric structures. In 
transformers, these priors can guide the design of attention mechanisms, embedding 
layers, and other components to ensure that they respect the underlying geometry of 
the data. 

One approach to incorporating geometric priors is to use convolutional filters 
that are designed to be equivariant to specific transformations. For example, in a 
spherical convolutional neural network, the filters are defined on the sphere .S2 and 
are equivariant to rotations. Mathematically, if .σ : S2 → R

n represents a filter on 
the sphere, the convolution operation . ∗ with an input function . f : S2 → R

m can be 
written as 

. ( f ∗ σ)(x) =
∫

S2
f (y)σ (R−1y) dμ(y),

where .R ∈ SO(3) is a rotation, and .dμ(y) is the surface measure on the sphere. 
By designing models with such equivariant operations, we encode the geometric 

prior directly into the architecture, ensuring that the model respects the symmetries 
of the data. 

Rotational and Translational Invariances 

Rotational and translational invariances are specific types of geometric invariances 
that are particularly important in tasks involving spatial data, such as image recog-
nition, 3D modeling, and physical simulations. Ensuring that a model is invariant to 
these transformations allows it to recognize patterns regardless of their orientation 
or position, leading to more robust and generalizable performance. 

Rotational Invariance: A function. f : Rd → R
n is said to be rotationally invariant 

if, for any rotation .R ∈ SO(d) and any point .x ∈ R
d , 

. f (Rx) = f (x).

Rotational invariance ensures that the output of the function remains unchanged 
under rotations of the input. In the context of transformers, rotational invariance can 
be particularly useful when dealing with data that has no preferred orientation, such 
as molecular structures or astronomical images.
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Example: Consider a transformer designed to classify 3D molecular structures. 
To ensure rotational invariance, the attention mechanism can be designed to compute 
attention scores based on distances between atoms rather than their absolute positions. 
If .xi , x j ∈ R

3 are the positions of two atoms, the attention score could be based on 
the distance .‖xi − x j‖, which is invariant under rotations. 

Translational Invariance: A function . f : Rd → R
n is translationally invariant if, 

for any translation vector .t ∈ R
d and any point .x ∈ R

d , 

. f (x + t) = f (x).

Translational invariance ensures that the function’s output does not change when 
the input is shifted in space. This property is crucial in tasks like image recognition, 
where objects can appear at different locations within an image. 

Example: In image processing, convolutional layers inherently provide transla-
tional invariance, as the same filter is applied across the entire image. In transformers, 
translational invariance can be achieved by using relative positional encodings, where 
the attention mechanism focuses on the relative positions of elements in the sequence 
rather than their absolute positions. 

To implement rotational and translational invariances in transformers, one 
approach is to design the self-attention mechanism and positional encodings to be 
invariant to these transformations. For rotational invariance, the attention mechanism 
can be modified to use features like distances, angles, or other rotationally invariant 
quantities. For translational invariance, relative positional encodings can be used to 
ensure that the attention scores depend only on the relative positions of the elements 
in the sequence. 

Definition 1.1 (Equivariance and Invariance in Attention)  Le  t .G be a group acting 
on the input space. X , and let.φ : G × X → X be the group action. An attention block 
is said to be equivariant to the group .G if the self-attention mechanism satisfies 

. Attention(φ(g, Q), φ(g, K ), φ(g, V )) = φ(g,Attention(Q, K , V )),

for all .g ∈ G.  I  f .φ(g, y) = y for all .g ∈ G and.y ∈ R
d , the model is invariant to the 

group . G. 

1.9 Function Approximation Theory 

Approximation theory [ 13, 46, 48] is a foundational branch of mathematical analy-
sis that deals with how functions can be approximated by simpler functions, such as 
polynomials, trigonometric functions, or other basis functions. This theory is essen-
tial in many areas of numerical analysis, signal processing, and machine learning, 
where the goal is to approximate complex functions with models that are computa-
tionally feasible. In the context of transformers and neural networks, approximation
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theory provides the mathematical underpinning for understanding how well a model 
can represent the underlying function or data distribution. 

1.9.1 Introduction to Approximation Theory 

Approximation theory is concerned with the approximation of functions by simpler 
or more convenient functions, often within a specified normed space. The most 
common types of approximations involve polynomial and trigonometric functions, 
which are used due to their well-understood properties and the ability to provide 
good approximations under certain conditions. 

Let . f : [a, b] → R be a continuous function. The goal of approximation theory 
is to find a sequence of simpler functions .{ fn} that converge to . f in some sense, 
typically measured by a norm such as the .L p norm or the maximum norm (sup 
norm). 

Polynomial and Trigonometric Approximations 

Polynomial Approximation: One of the most fundamental results in approximation 
theory is the Weierstrass approximation theorem, which states that any continuous 
function defined on a closed interval can be uniformly approximated by polynomials. 
Formally, if . f is a continuous function on.[a, b], then for every.ε > 0, there exists a 
polynomial .Pn(x) such that 

. ‖ f − Pn‖∞ = sup
x∈[a,b]

| f (x) − Pn(x)| < ε.

This result implies that polynomials are dense in the space of continuous functions 
with respect to the uniform norm. 

Example: Consider the function. f (x) = sin(x)on the interval.[0, π ]. Using Taylor 
series expansion around .x = 0, we can approximate .sin(x) by a polynomial: 

. sin(x) ≈ x − x3

3! + x5

5! − . . .

As more terms are included in the series, the polynomial approximation becomes 
increasingly accurate. 

Trigonometric Approximation: For periodic functions, trigonometric polynomials 
provide a natural and powerful tool for approximation. A trigonometric polynomial 
of degree . n is a function of the form:
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. Tn(x) = a0 +
n∑

k=1

(ak cos(kx) + bk sin(kx)) ,

where .ak and .bk are coefficients determined by the Fourier series of the function. 
The Fourier series of a function . f (x) with period .2π is given by 

. f (x) = a0
2

+
∞∑

k=1

(ak cos(kx) + bk sin(kx)) ,

where the coefficients .ak and .bk are computed as 

. ak = 1

π

∫ π

−π

f (x) cos(kx) dx, bk = 1

π

∫ π

−π

f (x) sin(kx) dx .

Example: The function. f (x) = |x | on.[−π, π ] can be approximated by its Fourier 
series. Since . f (x) is an even function, all the sine coefficients .bk are zero, and the 
series involves only cosine terms. 

The convergence of these series can be studied using various norms, with the . L2

norm being particularly important due to its connection with Parseval’s theorem, 
which states that the sum of the squares of the Fourier coefficients equals the . L2

norm of the function: 

. ‖ f ‖22 =
∞∑

k=0

(
a2k + b2k

)
.

Jackson’s Theorems 

Jackson’s theorems [ 32] provide quantitative results on the rate of approximation of 
continuous functions by polynomials or trigonometric polynomials. These theorems 
establish a relationship between the smoothness of a function and the rate at which 
its best approximation by polynomials converges to the function itself. 

Theorem 1.5 (Jackson’s Polynomial Approximation) Let . f : [−1, 1] → R be a 
continuous function with a modulus of continuity .ω( f, δ), defined as 

. ω( f, δ) = sup
|x−y|≤δ

| f (x) − f (y)|.

Then there exists a polynomial .Pn(x) of degree . n such that 

. ‖ f − Pn‖∞ ≤ C
ω( f, 1/n)

n
,

where .C is a constant independent of . n and . f .



62 1 Foundations of Representation Theory in Transformers

This result shows that the rate of convergence of the polynomial approximation 
depends on the smoothness of the function . f . 

Example: If . f (x) = |x | on .[−1, 1], then the modulus of continuity .ω( f, δ) = δ. 
According to Jackson’s theorem, the error in approximating . f (x) by a polynomial 
of degree . n is on the order of .1/n. 

Theorem 1.6 (Jackson’s Trigonometric Approximation) A similar result holds for 
the approximation of periodic functions by trigonometric polynomials. If . f is a 
periodic function with modulus of continuity.ω( f, δ), then there exists a trigonometric 
polynomial .Tn(x) of degree . n such that 

. ‖ f − Tn‖∞ ≤ C
ω( f, 1/n)

n
.

This result is particularly important in the analysis of Fourier series and the 
approximation of periodic functions in signal processing and harmonic analysis. 

Implications for Machine Learning: In machine learning, approximation theory 
provides a theoretical foundation for understanding how well a model can approxi-
mate a target function. For example, in neural networks, the universal approximation 
theorem states that a sufficiently large neural network can approximate any con-
tinuous function on a compact domain. This result is analogous to the Weierstrass 
approximation theorem but in the context of neural networks. However, the practi-
cal performance of neural networks depends on more than just the existence of an 
approximation; it also depends on the rate of convergence and the smoothness of 
the function being approximated. Jackson’s theorems provide insight into how the 
smoothness of the target function affects the quality of approximation, which in turn 
influences how deep or complex a neural network needs to be to achieve a certain 
level of accuracy. 

1.9.2 Universal Approximation Theorems 

Universal approximation theorems [ 6, 15, 30, 41] form the theoretical backbone 
of many neural network architectures, including transformers. These theorems pro-
vide guarantees that neural networks can approximate a wide range of functions 
to arbitrary accuracy, under certain conditions. Understanding these theorems is 
essential for grasping the potential and limitations of neural networks as func-
tion approximators, as well as their implications for complex architectures like 
transformers. 

Theorem 1.7 (Universal Approximation) Let .σ : R → R be a non-constant, 
bounded, and continuous activation function. Then, for any continuous function 
. f : [a, b] → R and any .ε > 0, there exists a neural network with one hidden layer 
that approximates . f to within . ε in the .L∞ norm:
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. ‖ f (x) −
N∑

i=1

ciσ(ai x + bi )‖∞ < ε

for some coefficients .ci , ai , bi ∈ R. 

Neural Networks as Universal Approximators 

The universal approximation theorem, in its most basic form, asserts that a feed-
forward neural network with a single hidden layer can approximate any continuous 
function on a compact domain, given a sufficient number of hidden units. This result 
is both powerful and foundational, as it assures us that even simple neural networks 
are, in principle, capable of representing highly complex functions. 

Let .σ : R → R be a non-constant, bounded, and continuous activation function. 
Consider a function . f : [a, b] ⊂ R

n → R that is continuous. The universal approx-
imation theorem states that for any .ε > 0, there exists a neural network . f̂ (x) of the 
form: 

. f̂ (x) =
N∑

i=1

ciσ(〈wi , x〉 + bi ),

where .ci ∈ R, .wi ∈ R
n , and .bi ∈ R are the parameters of the network, such that 

. sup
x∈[a,b]

| f (x) − f̂ (x)| < ε.

This result implies that the set of functions representable by such a neural network 
is dense in the space of continuous functions on .[a, b] with respect to the sup norm 
.‖ · ‖∞. The theorem does not specify how large the network must be to achieve a 
given level of accuracy, nor does it provide insights into the efficiency or training 
complexity of such networks. 

Proof Sketch: The proof involves constructing a sequence of neural network 
approximations to a given continuous function. f (x) and showing that this sequence 
converges uniformly to . f (x). The construction leverages the fact that the activation 
function.σ(x) can be used to approximate simple step functions, which in turn can be 
used to approximate more general functions through a combination of translations 
and scalings. 

Example: Consider the function . f (x) = |x | on the interval .[−1, 1]. A neural 
network with a ReLU activation function .σ(x) = max(0, x) can approximate . f (x)
as follows: 

. f (x) = x · 1x≥0 − x · 1x<0.

This can be rewritten as 

. f (x) = σ(x) + σ(−x)
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demonstrating that even simple piecewise linear functions like the absolute value 
function can be exactly represented by a neural network with ReLU activation. 

Extensions: The universal approximation theorem has been extended in various 
ways, including to networks with more than one hidden layer (deep networks) and 
to different types of activation functions, such as sigmoid or hyperbolic tangent 
functions. These extensions show that deep neural networks, with sufficient depth 
and width, are also universal approximators. 

Implications for Transformers 

Transformers, as deep neural network architectures, inherit the universal approx-
imation capabilities discussed in the universal approximation theorem. However, 
their specific architecture, which relies on self-attention mechanisms and layer 
normalization, introduces additional layers of complexity and expressiveness. 

Self-Attention Mechanism as a Function Approximator: The self-attention mech-
anism in transformers can be viewed as a special case of a neural network layer, 
where the attention weights dynamically adjust based on the input sequence. This 
mechanism allows the model to focus on different parts of the input sequence, effec-
tively approximating functions that capture dependencies and interactions between 
different elements of the sequence. 

Mathematically, let .X = {x1, x2, . . . , xn} be an input sequence, and let 
.WQ,WK ,WV be the learned weight matrices for the query, key, and value projections. 
The self-attention mechanism computes the output as 

. Attention(Q, K , V ) = Softmax

(
QK�
√
dk

)

V,

where .Q = XWQ , .K = XWK , and .V = XWV . The softmax operation ensures that 
the attention weights sum to 1, providing a weighted sum of the value vectors. This 
mechanism is highly expressive, as it can capture complex dependencies within the 
sequence, effectively learning to approximate functions that map input sequences to 
output sequences. 

Transformers as Universal Approximators: Transformers, like other deep neu-
ral networks, are capable of universal approximation. The specific architecture of 
transformers, with multiple layers of self-attention followed by feedforward neu-
ral networks, allows them to approximate a wide range of functions. The stacking 
of layers in transformers provides additional depth, which is crucial for capturing 
hierarchical structures in data. 

Implications for Model Design: The universal approximation property of trans-
formers suggests that, in principle, they can approximate any function on a compact 
domain, given sufficient layers and attention heads. However, in practice, the ability 
to achieve this approximation depends on factors such as 

1. Model Capacity: The number of layers, attention heads, and hidden units deter-
mines the capacity of the transformer to approximate complex functions. Increasing
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the model capacity not only improves its expressiveness but also increases the risk 
of overfitting and computational cost. 

2. Training Efficiency: The training process, including the choice of optimiza-
tion algorithms and learning rate schedules, affects how well the transformer can 
approximate the target function. Convergence guarantees, as discussed in optimiza-
tion theory, play a critical role in determining whether the model reaches a good 
approximation. 

3. Generalization: While transformers can approximate functions on the training 
data, their ability to generalize to unseen data is crucial for real-world applications. 
This generalization depends on the regularization techniques used, such as dropout 
or weight decay, and the availability of sufficient and diverse training data. 

Theorem 1.8 (Universal Approximation for Transformers) Let . f : [a, b]n → R
m

be a continuous function on a compact domain. For any .ε > 0, there exists a 
transformer model .Tθ with a sufficient number of layers and attention heads, and 
parameters . θ , such that 

. sup
x∈[a,b]n

‖ f (x) − Tθ (x)‖ < ε.

This theorem highlights that transformers, given appropriate architecture and 
training, can approximate complex functions to arbitrary accuracy, aligning with 
the broader results of universal approximation in neural networks. 

1.9.3 Expressivity in Transformer Models 

Expressivity in transformer models refers to the ability of these models to represent 
a wide range of functions, capturing complex relationships within data. This expres-
sivity is influenced by various factors, including the depth and width of the model, 
as well as the role of non-linearities in the architecture. A deep understanding of 
these factors is essential for designing transformers that are not only powerful but 
also efficient in their computational requirements. 

Depth Versus Width in Model Design 

In the design of neural networks, including transformers, two critical architectural 
aspects are depth (the number of layers) and width (the number of units or neurons 
in each layer). These two dimensions influence the model’s capacity to approximate 
functions and capture complex patterns in the data. 

Depth in a transformer model refers to the number of layers in the network. Each 
layer typically consists of a self-attention mechanism followed by a feedforward 
neural network. Depth allows the model to build hierarchical representations of the



66 1 Foundations of Representation Theory in Transformers

data, with deeper layers capturing increasingly abstract features. Mathematically, let 
. f : Rn → R

m be a function that the transformer aims to approximate. The output of 
a transformer with . L layers can be represented as 

. f (x) ≈ TL(TL−1(. . . T1(x) . . . )),

where each .Ti (x) represents the transformation applied by the . i th layer, including 
self-attention and feedforward operations. 

Theoretical results suggest that increasing the depth of a network enhances its 
expressivity, often exponentially. A seminal result by [ 55] shows that deep networks 
can represent highly oscillatory functions that shallow networks cannot approximate 
efficiently, even with an exponentially larger number of units. 

Theorem 1.9 Let . fd be a function representable by a deep network with . d layers, 
each with a fixed number of units. There exists a family of functions . fd(x) such that 
.supx | fd(x)| = 1, but any network with .d − 1 layers requires exponentially more 
units to approximate . fd within a given error . ε. 

This result indicates that depth can provide an exponential increase in expressiv-
ity, allowing deep networks to approximate functions with complex structures that 
shallow networks cannot. 

Width, on the other hand, refers to the number of units in each layer of the network. 
While increasing width can also enhance the model’s capacity, its impact is different 
from that of depth. Wide networks can represent more features at each level of 
abstraction but may struggle to capture deep, hierarchical structures. 

A fundamental result in approximation theory is that sufficiently wide networks 
with a single hidden layer can approximate any continuous function on a compact 
domain (the universal approximation theorem). However, this comes at the cost of 
potentially requiring an exponentially large number of units, especially if the target 
function has high complexity. 

Expressivity and the Trade-off: The expressivity of a transformer model is there-
fore a balance between depth and width. Deeper models can capture more complex, 
hierarchical relationships, while wider models can represent more features simulta-
neously. The choice between depth and width is often dictated by the specific task, 
the nature of the data, and computational constraints. 

In practical terms, deep transformers with moderate width are often favored in 
tasks requiring the modeling of long-range dependencies and intricate patterns, as 
the layers can progressively refine the representations. However, the increased depth 
comes with challenges, such as the vanishing gradient problem, which can impede 
training. 

Example: Consider the task of machine translation, where the goal is to map a 
sequence of words in one language to a sequence in another language. A deep trans-
former can effectively capture the hierarchical structure of the input sentence (e.g., 
syntactic dependencies) and produce a context-aware representation that facilitates
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accurate translation. If the transformer were shallow but wide, it might struggle to 
capture these dependencies effectively, leading to inferior translation quality. 

Role of Non-linearities 

Non-linearities in neural networks, including transformers, are crucial for enabling 
these models to approximate complex functions. Without non-linear activation func-
tions, a neural network composed of linear layers would be equivalent to a sin-
gle linear transformation, regardless of the depth, and thus would be incapable of 
representing non-linear relationships in the data. 

A non-linear activation function.σ : R → R is applied element-wise to the output 
of each layer in a neural network. Common activation functions include the rectified 
linear unit (ReLU), sigmoid, and hyperbolic tangent (tanh). The non-linearity intro-
duced by these functions allows the network to approximate non-linear functions. 
Mathematically, consider a feedforward neural network layer given by 

. z(l+1) = σ(W (l)z(l) + b(l)),

where.W (l) is the weight matrix,.z(l) is the input to the layer,.b(l) is the bias term, and 
. σ is the activation function. The non-linearity. σ is what allows the network to break 
free from the limitations of linear transformations. 

Impact of Non-Linearities on Expressivity: The inclusion of non-linearities greatly 
increases the expressivity of a neural network. A network with non-linear activation 
functions can approximate a much broader class of functions compared to a purely 
linear network. This is critical in transformers, where non-linearities enable the self-
attention mechanism and the feedforward layers to capture complex patterns and 
relationships in the data. 

In a transformer model, the feedforward network following the self-attention 
mechanism typically includes a non-linear activation function like ReLU. This non-
linearity allows the model to refine the representation of the input sequence in a non-
linear way, enhancing its ability to model intricate dependencies and interactions 
between elements of the sequence. 

Deep Versus Shallow Networks and Non-Linearities: Deep networks with mul-
tiple layers of non-linear transformations can approximate functions that require 
multiple levels of abstraction, something that shallow networks with the same num-
ber of non-linear units cannot do efficiently. This layered structure, combined with 
non-linearities, allows transformers to progressively build complex representations 
from simpler ones, capturing the hierarchical nature of many tasks, such as language 
processing and image recognition. 

Theorem 1.10 (Depth Efficiency of Deep Networks) Let .σ : R → R be a fixed 
non-linear activation function, and consider the function class .FL ,d representing the 
set of functions . f : Rn → R that can be realized by a feedforward neural network 
with .L layers, each layer containing at most . d units, and each unit applying the
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activation function . σ . For any positive integer .L1, there exists a function . f ∈ FL2,d2
for some .L2 > L1 and .d2 ≥ d1, such that for any function . f̃ ∈ FL1,d1 , where .d1 is a 
polynomially bounded function of . d2, the approximation error satisfies 

. inf
f̃ ∈FL1 ,d1

‖ f − f̃ ‖∞ ≥ ε

for some .ε > 0, unless .d1 grows exponentially in .L2 − L1. In other words, there 
exist functions that can be represented by deep networks with .L2 layers and .d2 units 
per layer that require exponentially more units to be approximated by shallower 
networks with .L1 layers, even when using the same non-linear activation . σ . 

This theorem underscores the importance of depth and non-linearities in neural 
networks, as they enable the representation of functions with complex hierarchical 
structures that would be intractable for shallow networks. 

Implications for Transformers: In transformers, the role of non-linearities extends 
beyond individual layers. The architecture as a whole benefits from the non-linearities 
in the self-attention mechanism, where the softmax function introduces a non-
linearity that is critical for differentiating between important and less important 
elements of the sequence. Additionally, the non-linear transformations in the feed-
forward layers help to refine these attention-based representations, further enhancing 
the model’s expressivity. 

1.10 Optimization Techniques 

Optimization techniques are central to training machine learning models, including 
transformers. These techniques involve adjusting the model parameters to minimize 
a loss function, which measures the discrepancy between the model’s predictions and 
the actual outcomes. This section delves into the mathematical foundations of various 
optimization algorithms, highlighting their convergence properties, computational 
efficiency, and applicability in different scenarios. 

1.10.1 Gradient Descent and Variants 

Gradient descent is the foundational algorithm for optimization in machine learning. 
It is an iterative method used to minimize a differentiable function . f (θ), where . θ
represents the model parameters. 

The basic idea of gradient descent is to update the parameters. θ in the direction of 
the negative gradient of the loss function, which points toward the steepest descent. 
Mathematically, the update rule for gradient descent is given by 

.θt+1 = θt − η∇ f (θt ),
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where .η > 0 is the learning rate and .∇ f (θt ) is the gradient of the loss function . f
with respect to . θt at iteration . t . 

The convergence of gradient descent depends on the properties of the loss function 
. f (θ).  I  f  . f is convex and has Lipschitz-continuous gradients (i.e., there exists a 
constant .L > 0 such that .‖∇ f (θ1) − ∇ f (θ2)‖ ≤ L‖θ1 − θ2‖ for all .θ1, θ2), then 
gradient descent converges to a global minimum. 

Theorem 1.11 (Convergence of Gradient Descent) Let . f : Rn → R be a convex 
function with Lipschitz-continuous gradients. Then, for a sufficiently small learning 
rate . η, gradient descent converges to a global minimum . θ∗: 

. ‖θt − θ∗‖ ≤ 1

t

(
2L( f (θ0) − f (θ∗))

μ

)

,

where . μ is the strong convexity constant of . f . 

This result guarantees that the distance between the current parameter vector and 
the optimal parameter vector decreases over time, leading to convergence. 

Variants of Gradient Descent: 
1. Batch Gradient Descent: In batch gradient descent, the gradient is computed 

using the entire dataset. This approach provides a stable estimate of the gradient but 
can be computationally expensive, especially for large datasets. 

2. Mini-batch Gradient Descent: Mini-batch gradient descent computes the gra-
dient using a subset of the data, called a mini-batch. This approach balances the 
computational efficiency of stochastic gradient descent with the stability of batch 
gradient descent. 

Example: Consider a simple linear regression model with parameters. θ = (θ0, θ1)

and a mean squared error loss function: 

. f (θ) = 1

2m

m∑

i=1

(yi − (θ0 + θ1xi ))
2.

The gradient descent update rules for .θ0 and .θ1 are 

. θ0 ← θ0 − η
1

m

m∑

i=1

(θ0 + θ1xi − yi ),

. θ1 ← θ1 − η
1

m

m∑

i=1

(θ0 + θ1xi − yi )xi .

These updates iteratively adjust the parameters to minimize the loss function.



70 1 Foundations of Representation Theory in Transformers

Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is a variant of gradient descent where the gradient 
is computed using a single data point or a small random subset of the data at each 
iteration. This introduces stochasticity into the optimization process, which can help 
the algorithm escape local minima. In SGD, the parameter update rule is given by 

. θt+1 = θt − η∇ fi (θt ),

where . fi (θt ) is the loss function evaluated on the . i th data point. 
SGD does not guarantee convergence to the global minimum, but it does converge 

to a region close to the minimum under certain conditions, especially when using 
decreasing learning rates. The stochastic nature of SGD allows it to explore the loss 
surface more effectively than batch gradient descent. 

Theorem 1.12 (Convergence of SGD) Let . f (θ) be a convex function, and let the 
learning rate .ηt satisfy the conditions: 

. 

∞∑

t=1

ηt = ∞ and
∞∑

t=1

η2
t < ∞.

Then, SGD converges almost surely to a global minimum . θ∗: 

. lim
t→∞E[ f (θt )] = f (θ∗).

This result shows that, with an appropriate learning rate schedule, SGD can 
converge to the optimal solution in expectation. 

In the context of deep learning, SGD is often preferred for training large mod-
els because it is computationally efficient and can handle large datasets. The noise 
introduced by the stochastic updates can also help the model generalize better by 
avoiding overfitting to the training data. 

Adam Optimizer 

The Adam optimizer [ 34] is an extension of SGD that incorporates adaptive learning 
rates for each parameter. It combines the benefits of two other extensions: RMSProp 
and momentum. Adam computes individual adaptive learning rates for different 
parameters using estimates of the first and second moments of the gradients: 

1. First Moment Estimate (Mean): 

. mt = β1mt−1 + (1 − β1)gt ,

where .gt = ∇ f (θt ) is the gradient at time step . t and .β1 is the decay rate for the 
moving average of the gradients.
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2. Second Moment Estimate (Variance): 

. vt = β2vt−1 + (1 − β2)g
2
t ,

where .β2 is the decay rate for the moving average of the squared gradients. 
3. Bias-Corrected Estimates: The estimates .mt and .vt are biased toward zero, 

especially in the early iterations. The bias-corrected estimates are 

. m̂t = mt

1 − β t
1

, v̂t = vt

1 − β t
2

.

4. Parameter Update: The parameters are updated as 

. θt+1 = θt − η
m̂t

√
v̂t + ε

,

where . η is the learning rate and . ε is a small constant to prevent division by zero. 
Advantages of Adam: Adam adjusts the learning rates based on the magnitudes 

of the gradients, allowing it to perform well on problems with sparse gradients or 
varying gradient magnitudes. It incorporates momentum, which helps accelerate 
convergence and smooths the optimization trajectory. 

Convergence Analysis: Adam has been shown to perform well in practice, though 
its theoretical convergence properties are still an area of active research. Under certain 
conditions, Adam converges to a stationary point, but the choice of hyperparameters 
.β1, β2, η,, and . ε plays a critical role in its performance. 

Adam is widely used in deep learning for training complex models like trans-
formers. Its ability to handle noisy gradients and adjust learning rates dynamically 
makes it particularly effective for optimizing deep neural networks. 

Learning Rate Schedules 

The learning rate is a critical hyperparameter in gradient-based optimization algo-
rithms. The choice of learning rate can significantly impact the convergence speed 
and the quality of the solution. Learning rate schedules are strategies for adjusting 
the learning rate during training. 

Types of Learning Rate Schedules: 
1. Step Decay: The learning rate is reduced by a factor . γ after a fixed number of 

epochs . T : 
. ηt = η0 · γ �t/T �,

where .η0 is the initial learning rate. 
2. Exponential Decay: The learning rate decreases exponentially with time: 

.ηt = η0 · e−λt ,
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where . λ controls the rate of decay. 
3. Polynomial Decay: The learning rate decreases according to a polynomial 

function of the iteration: 

. ηt = η0

(

1 − t

Tmax

)p

,

where.Tmax is the maximum number of iterations and. p is the power of the polynomial. 
4. Cosine Annealing: The learning rate follows a cosine function: 

. ηt = ηmin + 1

2
(ηmax − ηmin)

(

1 + cos

(
π t

Tmax

))

,

where .ηmin and .ηmax are the minimum and maximum learning rates, respectively. 

The learning rate schedule can have significant implications for the convergence 
behavior of the optimization algorithm. A well-chosen schedule can accelerate con-
vergence, prevent the algorithm from getting stuck in poor local minima, and lead to 
better generalization. 

In training transformers, a learning rate schedule is often combined with the Adam 
optimizer. The initial learning rate is typically set high to allow rapid progress, then 
gradually reduced to fine-tune the model as it approaches convergence. 

Remark (Convergence with Learning Rate Schedules): Let .ηt be a learning 
rate schedule that satisfies the conditions: 

. 

∞∑

t=1

ηt = ∞ and
∞∑

t=1

η2
t < ∞.

Then, gradient-based optimization algorithms converge to a stationary point .θ∗ of 
the loss function . f (θ). 

1.10.2 Saddle Points and Local Minima 

In non-convex optimization, which is common in training deep neural networks, the 
loss landscape is often highly complex, containing numerous saddle points, local 
minima, and potentially flat or sharp minima. Understanding the behavior of opti-
mization algorithms in such landscapes is crucial for designing effective training 
strategies. 

Saddle Points and Local Minima 

A saddle point in a function . f : Rn → R is a critical point .θ∗ where the gradi-
ent .∇ f (θ∗) = 0, but unlike a local minimum, the Hessian matrix .H(θ∗) has both
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positive and negative eigenvalues. This means that . f decreases in some directions 
and increases in others near . θ∗. Mathematically, if .θ∗ is a saddle point, there exist 
directions .v1 and .v2 such that 

. v�
1 H(θ∗)v1 > 0 and v�

2 H(θ∗)v2 < 0.

Saddle points are particularly problematic in optimization because standard gra-
dient descent algorithms may get stuck or exhibit slow convergence near these points, 
especially in high-dimensional settings where saddle points are more prevalent. 

Example: Consider the function . f (x, y) = x2 − y2. The point .(0, 0) is a saddle 
point, as .∇ f (0, 0) = 0, but the Hessian matrix 

. H(0, 0) =
(
2 0
0 −2

)

has eigenvalues . 2 and .−2, indicating directions of both ascent and descent. 
A local minimum .θ∗ of a function . f is a point where . f (θ∗) ≤ f (θ) for all . θ in 

some neighborhood of. θ∗. At a local minimum, the Hessian matrix.H(θ∗) is positive 
semi-definite, meaning all its eigenvalues are non-negative: 

. v�H(θ∗)v ≥ 0 for all v ∈ R
n.

In non-convex optimization, the landscape often contains many local minima, and 
some of these minima may correspond to poor solutions, particularly when they are 
sharp. 

Remark (Second-Order Condition for Local Minima): Let . f : Rn → R be a 
twice-differentiable function. A point .θ∗ is a local minimum if: 

1. .∇ f (θ∗) = 0 (first-order condition). 
2. .H(θ∗) is positive semi-definite (second-order condition). 

If .H(θ∗) is positive definite, .θ∗ is a strict local minimum. 

Flat Versus Sharp Minima 

Flat minima refer to regions of the loss landscape where the loss function is relatively 
constant over a large area, meaning the eigenvalues of the Hessian at these points are 
small. Optimization algorithms are generally more robust when they converge to flat 
minima, as these minima tend to generalize better to unseen data. Mathematically, 
a minimum .θ∗ is flat if the second derivative of the loss function is close to zero in 
most directions: 

. v�H(θ∗)v ≈ 0 for most directions v.

Sharp minima, on the other hand, are characterized by a steep increase in the loss 
function when moving away from the minimum, indicating that the Hessian at these
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points has large eigenvalues. Sharp minima often lead to poor generalization because 
the model is overly sensitive to small changes in the parameters. 

The nature of the minima found by an optimization algorithm can significantly 
affect the model’s performance. For instance, sharp minima are associated with over-
fitting, where the model captures noise in the training data rather than the underly-
ing pattern. Flat minima, being more stable, typically correspond to models that 
generalize better. 

In deep learning, regularization techniques such as dropout, weight decay, and 
data augmentation are used to encourage the optimization process to find flat minima, 
leading to models that are less likely to overfit and more likely to perform well on 
unseen data. 

In high-dimensional optimization, models that converge to flat minima often 
exhibit better generalization properties. Formally, let .θ∗ and .θ# be flat and sharp 
minima, respectively. If .H(θ∗) has smaller eigenvalues than .H(θ#), the model’s 
expected generalization error is lower at .θ∗ than at . θ#. 

1.10.3 Convergence Analysis 

Convergence analysis of optimization algorithms in non-convex settings is more chal-
lenging than in convex settings due to the presence of multiple local minima, saddle 
points, and other critical points [ 20, 33, 40, 47]. This section discusses the behavior 
of gradient-based methods in non-convex landscapes and the role of hyperparameters 
such as learning rates and momentum in ensuring convergence. 

Convergence in Non-convex Settings 

In non-convex optimization, the loss function. f (θ) may have multiple local minima 
and saddle points, making it difficult to guarantee convergence to a global mini-
mum. However, under certain conditions, gradient-based methods can still achieve 
convergence to a critical point that is a local minimum or a saddle point. 

SGD is widely used in non-convex optimization due to its ability to escape saddle 
points, thanks to its inherent noise. The noise introduced by stochastic updates allows 
SGD to avoid getting stuck at saddle points and move toward regions of the loss 
landscape that contain local minima. 

Theorem 1.13 (Convergence of SGD in Non-Convex Settings) Let . f (θ) be a non-
convex function with Lipschitz-continuous gradients. Assume that the learning rate 
.ηt satisfies.

∑∞
t=1 ηt = ∞ and.

∑∞
t=1 η2

t < ∞. Then SGD converges to a critical point 
. θ∗, which could be a local minimum or a saddle point: 

. lim
t→∞E[‖∇ f (θt )‖2] = 0.
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This theorem indicates that, with an appropriate learning rate schedule, SGD 
converges to a point where the gradient is zero, though it does not guarantee that this 
point is a global minimum. 

Escaping Saddle Points: Recent research has shown that SGD and other gradient-
based methods can escape saddle points efficiently, particularly when the learning 
rate is adaptive or when momentum is used. The noise in SGD can push the algo-
rithm away from saddle points, while momentum can help maintain the optimization 
trajectory, preventing it from stagnating near saddle points. 

In training deep neural networks, it is common to observe that SGD does not 
converge to the lowest possible loss but instead hovers around a local minimum. 
This behavior is often beneficial, as it helps the model generalize better by avoiding 
sharp minima. 

Role of Learning Rates and Momentum 

The learning rate . η is a crucial hyperparameter that determines the step size of the 
optimization algorithm. If the learning rate is too large, the algorithm may oscillate 
around minima or diverge. If it is too small, the algorithm may converge very slowly 
or get stuck in a suboptimal region. 

As discussed earlier, learning rate schedules involve adjusting the learning rate 
during training to balance exploration and exploitation. A common practice is to 
start with a high learning rate to make rapid progress and then gradually reduce it to 
fine-tune the solution. 

Momentum is a technique used to accelerate gradient descent by adding a frac-
tion of the previous update to the current update. This method helps to smooth the 
optimization trajectory and can speed up convergence, particularly in regions of the 
loss landscape that are shallow or contain small gradients. 

The update rule with momentum is given by 

. vt = βvt−1 + ∇ f (θt ),

. θt+1 = θt − ηvt ,

where .vt is the velocity, . β is the momentum coefficient (typically close to 1), and . η

is the learning rate. 
Remark (Convergence with Momentum): Under certain conditions, 

momentum-based gradient descent can achieve faster convergence than standard 
gradient descent. Specifically, let . θt be the parameter at iteration. t , and assume. f (θ)

is strongly convex with Lipschitz-continuous gradients. Then, gradient descent with 
momentum converges to the global minimum.θ∗ at a rate of 

.‖θt − θ∗‖ ≤ O(β t ),
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where . β is the momentum coefficient. This result shows that momentum can accel-
erate convergence by smoothing the trajectory and reducing oscillations. 

In deep learning, the combination of momentum with an adaptive learning rate 
optimizer like Adam can lead to rapid and stable convergence. The momentum helps 
navigate through flat regions and escape saddle points, while the adaptive learning rate 
ensures that the step size is appropriate for the local geometry of the loss landscape. 

1.11 Measure Theory and Information Theory 

Measure theory and information theory provide the mathematical foundation for 
understanding and quantifying uncertainty, randomness, and information in various 
contexts [ 2, 14, 23, 37]. These concepts are essential in many areas of machine learn-
ing and data science, including probability theory, entropy, and inference methods. In 
this section, we explore these topics, focusing on their mathematical underpinnings 
and their relevance to the design and analysis of machine learning models, including 
transformers. 

1.11.1 Basic Probability Concepts 

Probability theory is a branch of mathematics that deals with the analysis of random 
phenomena. The mathematical framework for probability theory is built on measure 
theory, where probabilities are assigned to events in a measurable space. 

A probability space .(�,F ,P) consists of three components: 

1. Sample Space (. �): The set of all possible outcomes of a random experiment. 
2. Sigma-Algebra (. F): A collection of subsets of . �, called events, that is closed 

under complement and countable unions. This ensures that the probability of any 
event can be well defined. 

3. Probability Measure (. P): A function .P : F → [0, 1] that assigns a probability to 
each event in . F . The measure . P satisfies the following axioms: 

(a) .P(�) = 1. 
(b) For any countable sequence of disjoint events .{Ai } ⊂ F , 

. P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai ).

A random variable is a measurable function .X : � → R that assigns a real num-
ber to each outcome in the sample space. The distribution of a random variable
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is described by its probability distribution function .FX (x) or probability density 
function . fX (x) in the continuous case: 

. FX (x) = P(X ≤ x), fX (x) = dFX (x)

dx
.

The expectation .E[X ], variance .Var(X), and higher moments provide important 
characteristics of the distribution of . X . 

Example: Consider a random variable .X representing the outcome of a fair die 
roll. The sample space is .� = {1, 2, 3, 4, 5, 6}, and the probability measure assigns 
.P({i}) = 1

6 for each .i ∈ �. The expectation of .X is given by 

. E[X ] =
6∑

i=1

i · P(X = i) = 1

6
· (1 + 2 + 3 + 4 + 5 + 6) = 3.5.

Two fundamental results in probability theory are the Law of Large Numbers 
(LLN) and the Central Limit Theorem (CLT): 

Theorem 1.14 (Law of Large Numbers) If .X1, X2, . . . are independent and iden-
tically distributed (i.i.d.) random variables with finite expectation .E[Xi ] = μ, 
then 

. 
1

n

n∑

i=1

Xi → μ as n → ∞ (almost surely).

Theorem 1.15 (Central Limit Theorem) If .X1, X2, . . . are i.i.d. random variables 
with finite mean . μ and variance .σ 2, then the normalized sum: 

. 
1√
n

(
n∑

i=1

Xi − nμ

)

→ N (0, σ 2) as n → ∞,

where .N (0, σ 2) is a normal distribution with mean 0 and variance .σ 2. 

These results are critical in understanding the behavior of random variables and 
form the basis for many statistical methods. 

Entropy and Information Gain 

Entropy is a measure of uncertainty or randomness in a probability distribution. It is 
a fundamental concept in information theory, introduced by Claude Shannon, and is 
used to quantify the amount of information contained in a random variable. 

Shannon Entropy: The entropy .H(X) of a discrete random variable .X with 
probability mass function .p(x) = P(X = x) is defined as
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. H(X) = −
∑

x∈X
p(x) log p(x),

where the logarithm is typically taken base 2 and the entropy is measured in bits. For 
a continuous random variable with probability density function. f (x), the differential 
entropy is defined as 

. h(X) = −
∫

X
f (x) log f (x) dx .

Entropy represents the average amount of information (in bits) produced by a 
random process. A higher entropy value indicates greater uncertainty or variability 
in the outcomes. 

Example: For a fair coin toss, the entropy is 

. H(X) = −
(
1

2
log

1

2
+ 1

2
log

1

2

)

= 1 bit.

Information Gain: Information gain measures the reduction in entropy when mov-
ing from a prior probability distribution to a posterior distribution after observing 
some evidence. It is commonly used in decision tree algorithms in machine learning. 

Let .X be a random variable representing the class labels, and. Y be a feature. The 
information gain .IG(X,Y ) is defined as 

. IG(X,Y ) = H(X) − H(X |Y ),

where .H(X |Y ) is the conditional entropy of .X given . Y : 

. H(X |Y ) =
∑

y∈Y
p(y)H(X |Y = y).

In a decision tree, the feature that provides the highest information gain is chosen 
for splitting the data, as it reduces the uncertainty (entropy) the most. 

Bayesian Inference 

Bayesian inference is a method of statistical inference in which Bayes’ theorem 
is used to update the probability of a hypothesis as more evidence or information 
becomes available. 

Bayes’ theorem relates the conditional probability of an event. A given. B to the con-
ditional probability of. B given. A, the prior probability of. A, and the prior probability 
of . B: 

.P(A|B) = P(B|A)P(A)

P(B)
.
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In Bayesian inference, the prior probability.P(A) represents our initial belief about 
the hypothesis. A. The likelihood.P(B|A) represents the probability of observing the 
evidence .B given that .A is true. The posterior probability .P(A|B) is the updated 
probability of . A after observing . B. 

Example: Suppose a medical test for a disease has a 95% accuracy and 1% of the 
population has the disease. If a person tests positive, the posterior probability that 
the person has the disease can be calculated using Bayes’ theorem. 

Bayesian Networks Bayesian networks are graphical models that represent the 
probabilistic relationships among a set of variables. Each node represents a ran-
dom variable, and the edges represent conditional dependencies. Bayesian networks 
are widely used in various applications, including decision-making, diagnostics, and 
machine learning. 

Example: In a Bayesian network for a weather prediction system, nodes could rep-
resent variables like temperature, humidity, and wind speed, with edges representing 
the dependencies between them. 

KL Divergence and Cross-Entropy 

Kullback–Leibler (KL) divergence is a measure of how one probability distribution 
diverges from a second, reference probability distribution. For two discrete probabil-
ity distributions .P and .Q defined on the same probability space, the KL divergence 
.DKL(P||Q) is given by 

. DKL(P||Q) =
∑

x∈X
P(x) log

P(x)

Q(x)
.

For continuous distributions, the sum is replaced by an integral: 

. DKL(P||Q) =
∫

X
p(x) log

p(x)

q(x)
dx .

KL divergence is non-negative and is zero if and only if .P = Q almost 
everywhere. It is not symmetric, meaning .DKL(P||Q) �= DKL(Q||P). 

In machine learning, KL divergence is used in variational inference to measure 
the difference between the approximate posterior distribution and the true posterior 
distribution. 

Cross-Entropy It is a related concept that measures the difference between two prob-
ability distributions for a given random variable or set of events. For two distributions 
.P and . Q, the cross-entropy .H(P, Q) is defined as 

.H(P, Q) = −
∑

x∈X
P(x) log Q(x).
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Cross-entropy can be decomposed into the entropy of .P and the KL divergence 
between .P and . Q: 

. H(P, Q) = H(P) + DKL(P||Q).

In machine learning, cross-entropy is often used as a loss function for classification 
tasks. The goal is to minimize the cross-entropy between the true labels (distribution 
. P) and the predicted probabilities (distribution . Q). 

Example: In binary classification, if the true label is .y ∈ {0, 1} and the predicted 
probability of the positive class is . ŷ, the cross-entropy loss is 

. Loss = −[y log ŷ + (1 − y) log(1 − ŷ)].

This loss function penalizes predictions that deviate from the true labels, driving 
the model to improve its predictions. 

Theorem 1.16 (Information Inequality) The information inequality, also known as 
Gibbs’ inequality, states that the KL divergence between two distributions .P and . Q
is always non-negative: 

. DKL(P||Q) ≥ 0,

with equality if and only if .P = Q almost everywhere. 

This theorem underpins the use of KL divergence as a measure of how one 
distribution approximates another. 

1.11.2 Foundations of Measure Theory 

Measure theory is a fundamental branch of mathematics that extends the notion of 
length, area, and volume to more complex sets, providing a foundation for inte-
gration and probability [ 18, 26, 50, 51]. This chapter delves into the core concepts 
of measure theory, focusing on the Lebesgue measure and integration, as well as 
measure-preserving transformations. These concepts are not only central to analysis 
but also play a crucial role in probability theory, information theory, and various 
fields where continuous distributions are studied. 

Lebesgue Measure and Integration 

The Lebesgue measure is a mathematical construct that generalizes the notion of 
length, area, and volume to more complex sets in .R

n . Unlike the Riemann integral, 
which relies on partitioning the domain of a function into intervals, the Lebesgue 
measure allows for the measurement of more irregular sets by considering their “size” 
in a more general sense. Formally, a measure . μ on a set .X is a function that assigns
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a non-negative real number or .+∞ to each measurable subset of . X , satisfying the 
following properties: 

1. Non-negativity: .μ(A) ≥ 0 for all measurable sets .A ⊆ X . 
2. Null empty set: .μ(∅) = 0. 
3. Countable additivity (.σ -additivity): For any countable collection.{Ai } of disjoint 

measurable sets, 

. μ

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

μ(Ai ).

The Lebesgue measure.λn on.R
n is the standard measure that extends the concept 

of length in.R
1,  area  i  n.R

2, and volume in.R
3 to higher dimensions. For a set.A ⊆ R

n , 
the Lebesgue measure.λn(A) is defined in such a way that it coincides with the usual 
notions of length, area, or volume for simple geometric shapes. 

Example: Consider the interval.A = [0, 1] ⊂ R. The Lebesgue measure.λ1(A) of 
this interval is simply its length, which is .1 − 0 = 1. 

Lebesgue Integration It is a method of integration that, unlike Riemann integra-
tion, focuses on measuring the “size” of the set where the function takes on certain 
values rather than partitioning the domain into intervals. This approach allows for 
the integration of a broader class of functions, particularly those with discontinuities 
or unbounded intervals. Let .(X,F , μ) be a measure space, where .X is a set, .F is a 
.σ -algebra of subsets of. X , and. μ is a measure on. F . A function. f : X → R is called 
measurable if for every Borel set .B ⊆ R, the preimage . f −1(B) is in . F . 

The Lebesgue integral of a non-negative measurable function . f : X → [0,∞]
with respect to the measure . μ is defined as 

. 

∫

X
f dμ = sup

{∫

X
g dμ | g is a simple function, 0 ≤ g ≤ f

}

,

where a simple function .g : X → R is a finite linear combination of indicator 
functions of measurable sets: 

. g(x) =
n∑

i=1

ai1Ai (x),

with .ai ≥ 0 and .Ai ∈ F . 
For general integrable functions . f : X → R, the integral is defined by decom-

posing . f into its positive and negative parts: 

. f = f + − f −, where f + = max( f, 0) and f − = max(− f, 0),

and then integrating each part separately:
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. 

∫

X
f dμ =

∫

X
f + dμ −

∫

X
f − dμ,

provided that at least one of these integrals is finite. 

Dominated Convergence Theorem One of the central results in Lebesgue integra-
tion is the dominated convergence theorem, which provides conditions under which 
the limit of a sequence of integrable functions can be interchanged with the integral. 

Theorem 1.17 (Dominated Convergence Theorem) Let .{ fn} be a sequence of mea-
surable functions such that . fn → f almost everywhere, and suppose there exists an 
integrable function . g such that .| fn(x)| ≤ g(x) for all . n and almost every . x. Then 

. lim
n→∞

∫

X
fn dμ =

∫

X
lim
n→∞ fn dμ =

∫

X
f dμ.

This theorem is particularly important in the context of probability theory and 
stochastic processes, where it allows for the exchange of limits and integrals under 
certain conditions. 

Example: Consider the sequence of functions. fn(x) = xn on the interval.[0, 1].  A  s  
. n increases, . fn(x) converges pointwise to the function . f (x) = 0 for .x ∈ [0, 1) and 
. f (1) = 1. Since . fn(x) ≤ 1 for all .x ∈ [0, 1], the dominated convergence theorem 
allows us to conclude that 

. lim
n→∞

∫ 1

0
xn dx =

∫ 1

0
lim
n→∞ xn dx =

∫ 1

0
0 dx = 0.

Measure-Preserving Transformations 

Measure-Preserving Transformations: A transformation .T : X → X on a measure 
space.(X,F , μ) is said to be measure-preserving if, for every measurable set.A ∈ F , 
the measure of . A is equal to the measure of its image under . T : 

. μ(T−1(A)) = μ(A).

Measure-preserving transformations are crucial in the study of dynamical systems, 
ergodic theory, and probability theory, as they describe systems where the total 
measure (interpreted as total probability, volume, etc.) is conserved over time. 

Example: A simple example of a measure-preserving transformation is the rota-
tion of the unit circle . S1. Consider the circle as the interval .[0, 1) with endpoints 
identified, equipped with the Lebesgue measure. The rotation by a fixed angle . α, 
given by .T (x) = (x + α) mod 1, preserves the Lebesgue measure because the 
“length” of any interval on the circle is unchanged by the rotation.
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In ergodic theory, measure-preserving transformations are studied to understand 
the long-term average behavior of dynamical systems. A measure-preserving trans-
formation. T is called ergodic if any .T -invariant set (a set . A such that .T−1(A) = A) 
has measure 0 or 1. This means that the system, when observed over a long time, 
cannot be decomposed into simpler invariant subsystems. 

Theorem 1.18 (Birkhoff’s Ergodic Theorem) Let .T : X → X be a measure-
preserving transformation on a probability space .(X,F , μ), and let . f : X → R be 
an integrable function. Then, the time average of . f along the orbits of . T converges 
almost everywhere to the space average (expected value): 

. lim
N→∞

1

N

N−1∑

n=0

f (T n(x)) =
∫

X
f dμ for μ-almost every x ∈ X.

This theorem provides a link between the temporal behavior of a system and 
its spatial properties, and is foundational in the study of statistical mechanics and 
information theory. 

Measure-preserving transformations and ergodic theory have applications in vari-
ous fields, including statistical mechanics, where they are used to justify the assump-
tion that time averages can be replaced by ensemble averages. In information theory, 
these concepts underpin the analysis of data compression algorithms and the behavior 
of stochastic processes over time. 

Example: In the analysis of random walks, measure-preserving transformations 
are used to study the recurrence properties of the walk, determining whether it returns 
to a given state with probability 1 or eventually escapes to infinity. 

1.11.3 Mutual Information 

Mutual information measures the amount of information that one random variable 
contains about another. It quantifies the reduction in uncertainty about one vari-
able given knowledge of the other. Mathematically, the mutual information. I (X; Y )

between two random variables .X and . Y is defined as 

. I (X; Y ) =
∫

X×Y
p(x, y) log

(
p(x, y)

p(x)p(y)

)

dx dy,

where .p(x, y) is the joint probability density function of .X and . Y , and .p(x) and 
.p(y) are the marginal probability density functions of .X and . Y , respectively. 

Alternatively, mutual information can be expressed in terms of entropy: 

.I (X; Y ) = H(X) − H(X |Y ) = H(Y ) − H(Y |X),
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where.H(X) and.H(Y ) are the entropies of .X and. Y , and.H(X |Y ) and.H(Y |X) are 
the conditional entropies. 

Properties of mutual information: 

1. Non-negativity: .I (X; Y ) ≥ 0, with equality if and only if .X and . Y are indepen-
dent. 

2. Symmetry: .I (X; Y ) = I (Y ; X). 
3. Data Processing Inequality: If .X → Y → Z forms a Markov chain, then 

.I (X; Z) ≤ I (X; Y ). 

Example: Consider two binary random variables .X and . Y , each taking val-
ues in .{0, 1}.  I  f  .X and .Y are perfectly correlated (i.e., .X = Y ), the mutual infor-
mation .I (X; Y ) is maximized, indicating that knowing .X completely determines 
. Y . Conversely, if .X and .Y are independent, .I (X; Y ) = 0, reflecting no mutual 
dependence. 

Theorem 1.19 (Chain Rule for Mutual Information) Let .X,Y, Z be random 
variables. The mutual information satisfies the following chain rule: 

. I (X; Y, Z) = I (X; Y ) + I (X; Z |Y ).

This theorem is useful for decomposing the mutual information between a set 
of variables into more manageable components, particularly in analyzing complex 
models like transformers. 

Applications to Transformer Models 

In transformer models, mutual information plays a crucial role in understanding how 
information is distributed and processed across different layers and attention heads. 
It can be used to measure the amount of information that the model retains about the 
input as it propagates through the layers, providing insights into the model’s ability 
to capture relevant dependencies. 

The Information Bottleneck (IB) principle, introduced by [ 57], provides a frame-
work for understanding the trade-off between compression and relevance in machine 
learning models. The IB principle suggests that a good representation .Z of the 
input .X should maximize the mutual information .I (Z; Y ) with the output . Y , while 
minimizing the mutual information .I (Z; X) with the input . X : 

. min I (Z; X) subject to I (Z; Y ) ≥ constant.

In transformers, this principle can be applied to analyze how different layers 
balance the retention of useful information versus the compression of irrelevant 
details. 

The attention mechanism in transformers can be analyzed using mutual informa-
tion to quantify how much information from the input sequence is captured by each
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attention head. By measuring the mutual information between the input tokens and 
the output of each attention layer, one can identify which attention heads are most 
effective in capturing long-range dependencies or specific patterns in the data. 

Remark (Mutual Information in Attention Layers): Let . X = {x1, x2, . . . , xn}
be an input sequence and.Y = {y1, y2, . . . , ym} be the output sequence produced by 
an attention layer. The mutual information between .X and . Y is given by 

. I (X; Y ) =
n∑

i=1

m∑

j=1

I (xi ; y j |context),

where .context refers to the set of all other tokens considered by the attention mech-
anism. This decomposition allows for a detailed analysis of how information is 
distributed across different tokens and attention heads. 

Example: In natural language processing tasks, one might measure the mutual 
information between specific words in the input sentence and the output repre-
sentation to understand how well the transformer captures syntactic or semantic 
relationships. 

1.11.4 Complexity and Generalization 

The complexity of a model refers to its ability to fit a wide range of functions 
or data patterns. A key challenge in model design is to balance complexity with 
generalization, ensuring that the model performs well not only on the training data 
but also on unseen data. This section explores the concept of Kolmogorov complexity 
and how generalization bounds can be established for machine learning models, 
including transformers. 

Kolmogorov Complexity 

Kolmogorov complexity, also known as algorithmic complexity, measures the com-
plexity of an object (such as a string or a function) by the length of the shortest 
program that can produce that object on a universal Turing machine. Formally, the 
Kolmogorov complexity .K (x) of a string . x is defined as 

. K (x) = min{|p| : U (p) = x},

where .U is a fixed universal Turing machine, . p is a program that generates . x , and 
.|p| denotes the length of . p in bits. 

Kolmogorov complexity provides a formal measure of the “compressibility” of 
an object. If . x can be generated by a short program, it has low complexity; if the
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shortest program is nearly as long as . x itself, the object is incompressible and has 
high complexity. 

Properties of Kolmogorov complexity: 

1. Incomputability: Kolmogorov complexity is not computable in general, meaning 
there is no algorithm that can determine the exact complexity of any given string. 

2. Invariance: The complexity.KU (x) depends on the choice of the universal Turing 
machine. U , but the difference between complexities for different choices of .U is 
bounded by a constant independent of . x . 

3. Prefix Complexity: A variant of Kolmogorov complexity, called prefix complexity 
.Kpre f i x(x), considers only prefix-free programs (where no program is a prefix of 
another), and is used in areas such as information theory and coding. 

Example: The string .x = 01010101 . . . 01 (with length . n) has low Kolmogorov 
complexity because it can be generated by a short program that outputs “01” 
repeatedly. In contrast, a random string of the same length would likely have high 
complexity, as it cannot be compressed into a shorter program. 

Kolmogorov complexity provides a theoretical foundation for understanding the 
trade-off between model complexity and generalization. Models that are too complex 
may fit the training data perfectly but fail to generalize to new data (overfitting), while 
models that are too simple may underfit the data, missing important patterns. 

Remark (Kolmogorov Complexity and Overfitting): Let .H be a hypothesis 
class and.h ∈ H be a hypothesis selected by a learning algorithm based on the training 
data. D. If the Kolmogorov complexity.K (h) is high relative to the complexity of the 
data .K (D), the hypothesis . h is more likely to overfit the data. Conversely, if . K (h)

is low, the hypothesis is more likely to generalize well. 

Generalization Bounds 

Generalization refers to the ability of a model to perform well on unseen data, not just 
on the data it was trained on. Generalization bounds provide theoretical guarantees 
on how well a model trained on a finite sample will perform on the overall data 
distribution. 

In the Probably Approximately Correct (PAC) learning framework, we seek to 
understand the conditions under which a learning algorithm can produce a hypothesis 
that, with high probability, performs close to optimally on the underlying distribution. 
Let.H be a hypothesis class,.D be the training data drawn from a distribution. D, and 
. ε be the allowable error. A hypothesis . h is said to be .ε-good if: 

. Px∼D[h(x) �= f (x)] ≤ ε,

where . f (x) is the true underlying function. The PAC learning framework provides 
bounds on the sample size. m needed to guarantee that the learning algorithm produces 
an .ε-good hypothesis with high probability.
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The Vapnik–Chervonenkis (VC) dimension is a measure of the capacity or com-
plexity of a hypothesis class . H. It is defined as the size of the largest set of points 
that can be shattered by . H, where “shatter” means that for every possible labeling 
of the points, there exists a hypothesis in .H that correctly classifies them. 

Theorem 1.20 (Generalization Bound via VC Dimension) Let .H be a hypothesis 
class with VC dimension .dVC . Then, for any .ε > 0 and .δ > 0, with probability at 
least .1 − δ, the generalization error of a hypothesis . h learned from .m samples is 
bounded by 

. Px∼D[h(x) �= f (x)] ≤ ε̂ + O

(√
dVC log(m/dVC) + log(1/δ)

m

)

,

where . ε̂ is the empirical error on the training set. This bound indicates that the 
generalization error decreases as the number of samples increases, and it depends 
on the complexity of the hypothesis class as measured by the VC dimension. 

In transformers, the generalization ability is influenced by both the architecture’s 
capacity (e.g., number of layers, attention heads) and the regularization techniques 
used during training. The VC dimension or similar complexity measures can be used 
to understand the trade-offs involved in designing transformer models that generalize 
well to new data. For a transformer model, one might analyze the VC dimension of 
the attention mechanism or the overall architecture to predict how well the model is 
likely to generalize based on the amount of training data available. 

1.12 Backpropagation and Autodiff 

Backpropagation is a cornerstone of modern deep learning, providing an efficient 
way to compute gradients of loss functions with respect to model parameters. These 
gradients are crucial for training neural networks using optimization algorithms like 
gradient descent [ 7, 22, 39, 52]. In this chapter, we explore the mathematical foun-
dations of backpropagation, focusing on the chain rule in matrix calculus and the 
propagation of errors through neural networks. 

1.12.1 Backpropagation 

Backpropagation is essentially an application of the chain rule of calculus, extended 
to functions represented by neural networks. It allows for the computation of gradients 
by systematically applying the chain rule from the output layer back to the input layer, 
hence the name “backpropagation.”
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Chain Rule in Matrix Calculus 

The chain rule is a fundamental tool in calculus, used to differentiate composite 
functions. In the context of neural networks, where functions are often represented 
as compositions of multiple layers, the chain rule is applied repeatedly to compute the 
derivative of the loss function with respect to each parameter. Let. f : Rm → R

n and 
.g : Rn → R

p be differentiable functions. The composite function . h(x) = g( f (x))
maps.Rm to.R

p. The derivative (or Jacobian matrix) of.h(x)with respect to. x is given 
by the chain rule: 

. 
∂h

∂x
= ∂g

∂ f
· ∂ f

∂x
,

where . ∂g
∂ f is the Jacobian matrix of . g with respect to . f (x) and . ∂ f

∂x is the Jacobian 
matrix of . f with respect to . x . 

Example: Consider a neural network with a single hidden layer. Let the input 
.x ∈ R

m be mapped to a hidden representation . h via a weight matrix .W1 and an 
activation function . σ : 

. h = σ(W1x).

The output . y is then computed as 

. y = W2h = W2σ(W1x).

If the loss function.L(y, ŷ)measures the discrepancy between the predicted output 
. y and the true output. ŷ, the derivative of the loss with respect to.W1 involves applying 
the chain rule: 

. 
∂L

∂W1
= ∂L

∂y
· ∂y

∂h
· ∂h

∂W1
.

Here, . ∂L
∂y is the gradient of the loss with respect to the output, . ∂y

∂h = W�
2 , and . ∂h

∂W1

involves differentiating through the activation function . σ . 
Matrix Chain Rule: When dealing with matrices, the chain rule is extended to 

account for the dimensions and interactions of matrix operations. Suppose . A =
f (X) and.B = g(A) where.X, A, B are matrices and. f, g are matrix functions. The 
derivative of . B with respect to .X is computed using: 

. 
∂B

∂X
= ∂B

∂A
· ∂A

∂X
,

where. ∂A
∂X and.

∂B
∂A are tensor derivatives that account for the multi-dimensional nature 

of matrix operations. 

Theorem 1.21 (Chain Rule for Scalar-Valued Functions) Let . f : Rn → R
m and . g :

R
m → R be differentiable functions. The gradient of the composite function . h(x) =

g( f (x)) with respect to . x is given by
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. ∇h(x) = ∇ f (x)� · ∇g( f (x)),

where .∇ f (x) is the Jacobian matrix of . f and .∇g( f (x)) is the gradient of . g with 
respect to . f (x). 

The chain rule is particularly powerful in neural networks because it allows the 
gradient of the loss function with respect to any parameter to be computed efficiently 
by propagating gradients backward through the network. This efficiency is crucial 
given the large number of parameters typically involved in deep learning models. 

Error Propagation in Neural Networks 

In backpropagation, errors are propagated backward through the network to update 
the weights in a way that minimizes the loss function. This process involves com-
puting the gradient of the loss with respect to each weight in the network, starting 
from the output layer and moving backward to the input layer. 

Forward Pass: During the forward pass, the input data . x is passed through the 
network layer by layer, and the output . y is computed. Each layer applies a linear 
transformation followed by a non-linear activation function: 

. h(l) = σ(W (l)h(l−1) + b(l)),

where .h(l) is the output of the . lth layer, .W (l) and .b(l) are the weight matrix and bias 
vector for that layer, and . σ is the activation function. 

Backward Pass: In the backward pass, the error at the output layer is computed 
as the gradient of the loss function with respect to the output. This error is then 
propagated backward through the network to update the weights. Let . L be the loss 
function, and let .δ(l) denote the error term at layer . l, defined as the gradient of the 
loss with respect to the linear combination of inputs to that layer: 

. δ(l) = ∂L

∂z(l)
= ∂L

∂h(l)
· σ ′(z(l)),

where .z(l) = W (l)h(l−1) + b(l) is the input to the activation function at layer . l. 
The weight updates are then computed using: 

. 
∂L

∂W (l)
= δ(l) · (h(l−1))�,

. 
∂L

∂b(l)
= δ(l).

Recursive Error Propagation: The error.δ(l) at layer. l can be expressed recursively 
in terms of the error at the subsequent layer .δ(l+1):
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. δ(l) = (W (l+1))�δ(l+1) · σ ′(z(l)).

This recursion allows the error to be efficiently propagated from the output layer 
back to the input layer. 

Remark: For a neural network with . L layers, the gradient of the loss function . L
with respect to the weights .W (l) in the . lth layer is given by 

. 
∂L

∂W (l)
= δ(l) · (h(l−1))�,

where.δ(l) = ∂L
∂z(l) is the backpropagated error and.h(l−1) is the output of the previous 

layer. 
Example: Consider a simple neural network with a single hidden layer. The net-

work output is .y = σ(W2σ(W1x)), and the loss function is the mean squared error 
.L = 1

2 (y − ŷ)2. During backpropagation, the error is computed at the output layer 
and propagated backward to update the weights .W1 and .W2. 

If . σ is the ReLU activation function, then the gradient of the loss with respect to 
.W2 is 

. 
∂L

∂W2
= (y − ŷ) · σ(W1x)

�,

and the gradient with respect to .W1 is 

. 
∂L

∂W1
= ((y − ŷ) · W2 · σ ′(W1x)) · x�.

1.12.2 Automatic Differentiation 

Automatic differentiation (autodiff) is a computational technique that efficiently 
computes derivatives of functions specified by computer programs. Unlike symbolic 
differentiation, which involves manipulating mathematical expressions, or numeri-
cal differentiation, which approximates derivatives using finite differences, autodiff 
provides exact derivatives with minimal computational overhead. This is particularly 
important in deep learning, where models like transformers require the computation 
of gradients for optimization. 

Forward and Reverse Mode Differentiation 

In forward mode automatic differentiation, the derivative of each operation is com-
puted simultaneously as the operation is performed, propagating derivatives from 
the inputs to the output. Let . f : Rn → R

m be a function composed of intermediate
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variables.z1, z2, . . . , zk , where each. zi depends on a subset of the previous variables. 
Forward mode calculates the derivative of the output with respect to each input by 
applying the chain rule in a straightforward manner. 

Mathematically, for each intermediate variable . zi , the derivative .żi with respect 
to a specific input .x j is computed as 

. żi =
∑

k∈parents(zi )

∂zi
∂zk

żk,

where .żk is the derivative of the parent variable .zk with respect to . x j . 
Example: Consider the function . f (x1, x2) = sin(x1) + x1x22 . To compute the 

derivative of . f with respect to .x1 using forward mode, we start by defining the 
intermediate variables: 

. z1 = sin(x1), z2 = x1x
2
2 .

The derivative with respect to .x1 is 

. 
d f

dx1
= dz1

dx1
+ dz2

dx1
= cos(x1) + x22 .

Reverse mode automatic differentiation, commonly used in backpropagation, 
computes the derivative of the output with respect to each input by propagating 
derivatives backward from the output to the inputs. This mode is particularly effi-
cient when the function has many inputs and a single output, as it computes the 
gradient with respect to all inputs in a single backward pass. Mathematically, reverse 
mode computes the derivative .z̄i of the output with respect to each intermediate 
variable .zi using the chain rule in reverse: 

. z̄i =
∑

k∈children(zi )
z̄k

∂zk
∂zi

,

where .z̄k is the derivative of the output with respect to the child variable . zk . 
Example: For the same function. f (x1, x2) = sin(x1) + x1x22 , reverse mode starts 

by computing the derivative of . f with respect to the output and then propagates it 
backward to each input: 

. z̄1 = 1, z̄2 = 1.

Then, the derivatives with respect to the inputs are 

. 
d f

dx1
= z̄1 · dz1

dx1
+ z̄2 · dz2

dx1
= cos(x1) + x22 ,

.
d f

dx2
= z̄2 · dz2

dx2
= 2x1x2.
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Let . f : Rn → R be a differentiable function. The reverse mode of automatic 
differentiation computes the gradient .∇ f (x) with respect to all inputs .x ∈ R

n with 
a computational cost proportional to that of evaluating . f (x). Specifically, the time 
complexity of reverse mode is .O(n), making it highly efficient for scalar-valued 
functions with many inputs. 

In transformer models, which typically involve complex compositions of lin-
ear transformations, attention mechanisms, and non-linear activations, reverse mode 
automatic differentiation is used to compute gradients during backpropagation. This 
allows for efficient optimization of model parameters using gradient-based methods. 

For example, in the multi-head self-attention mechanism, the output is a weighted 
sum of value vectors, where the weights are computed based on the similarity between 
queries and keys. To optimize this mechanism, gradients of the loss function with 
respect to the query, key, and value matrices are required. Reverse mode autodiff 
efficiently computes these gradients by propagating errors back through the layers 
and attention heads. 

Let .L be the loss function for a transformer model, and let . � =
{WQ,WK ,WV ,WO , . . . } represent the set of trainable parameters. The gradient 
of . L with respect to each parameter .θ ∈ � is computed using reverse mode autodiff 
as 

. ∇θL = ∂L
∂y

· ∂y

∂θ
,

where. y is the model output. The efficiency of this computation is critical for training 
large-scale transformer models with millions or billions of parameters. 

1.12.3 Optimization Challenges in Transformers 

Training deep neural networks, including transformers, presents significant optimiza-
tion challenges. Among these are the issues of vanishing and exploding gradients, 
which can hinder the training process, especially in very deep networks [ 5, 28, 45]. 
Various techniques, such as gradient clipping, have been developed to mitigate these 
issues and ensure stable training. 

Vanishing and Exploding Gradients 

The vanishing gradient problem occurs when the gradients of the loss function with 
respect to the model parameters become very small during backpropagation, effec-
tively halting the learning process. This problem is particularly prevalent in deep 
networks, where gradients must be propagated through many layers. 

Consider a deep neural network where the activation function is sigmoid. σ(x) =
1

1+e−x . The derivative of the sigmoid function is
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. σ ′(x) = σ(x)(1 − σ(x)).

Since .σ(x) is bounded between 0 and 1, its derivative is also bounded, and for 
most values of . x , .σ ′(x) is close to zero. During backpropagation, the gradient at 
each layer is multiplied by the derivative of the activation function from the previous 
layer. In deep networks, this repeated multiplication can lead to an exponential decay 
of the gradient, making it nearly zero by the time it reaches the earlier layers: 

. 
∂L

∂W (l)
≈

L∏

k=l

σ ′(z(k)) · ∂L
∂z(L)

,

where . L is the total number of layers. If .σ ′(z(k)) is small, the product can approach 
zero, leading to vanishing gradients. 

Conversely, the exploding gradient problem arises when the gradients grow expo-
nentially during backpropagation, leading to numerical instability. This typically 
happens when the weights of the network are initialized poorly or when the loss 
landscape has steep regions. In the case of exploding gradients, the derivative of 
the loss with respect to the weights can grow exponentially if the derivatives of the 
activation functions are large or if the weight matrices have large eigenvalues. This 
causes the gradients to increase exponentially as they are propagated backward: 

. 
∂L

∂W (l)
≈

L∏

k=l

σ ′(z(k)) · ∂L
∂z(L)

.

If the factors.σ ′(z(k)) or the weight matrices are large, the product can lead to very 
large gradients, causing the learning process to diverge. 

Let . f (x) = WLσ(WL−1 . . . σ (W1x) . . . ) be a deep neural network. The norm of 
the gradient of the loss . L with respect to the input . x satisfies 

. ‖∇xL‖ = ‖
L∏

l=1

W�
l σ ′(z(l)) · ∇yL‖,

where.y = f (x) and.σ ′(z(l)) denotes the derivative of the activation function at layer 
. l.  I  f  .‖Wl‖ > 1 for most layers, the norm of the gradient can grow exponentially, 
leading to exploding gradients. Conversely, if .‖Wl‖ < 1, the gradient can vanish. 

Gradient Clipping and Other Techniques 

Gradient clipping is a technique used to prevent exploding gradients by capping the 
gradients at a predefined threshold. This is particularly useful in very deep networks 
or recurrent neural networks where the gradients can become excessively large. Let
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. g be the gradient of the loss with respect to a parameter . θ . In gradient clipping, the 
gradient is rescaled if its norm exceeds a certain threshold . c: 

. g̃ =
{
g if ‖g‖ ≤ c,

c · g
‖g‖ if ‖g‖ > c.

This ensures that the gradients remain within a manageable range, preventing 
numerical instability during training. 

Example: Consider a transformer model with gradients .∇θL for each parameter 
. θ . If the norm of the gradient.‖∇θL‖ exceeds a threshold. c, gradient clipping rescales 
the gradient: 

. ˜∇θL = c

‖∇θL‖ · ∇θL,

ensuring that the gradient update remains stable. 

Other Techniques: 
1. Weight Initialization: Proper weight initialization can mitigate the vanishing 

and exploding gradient problems. Techniques like Xavier initialization and He ini-
tialization are designed to keep the variance of the activations and gradients stable 
across layers. 

Xavier Initialization: For a layer with.nin input units, Xavier initialization sets the 
weights .W to be drawn from a uniform distribution: 

. W ∼ U
(

−
√
6√

nin + nout
,

√
6√

nin + nout

)

,

where .nout is the number of output units. This ensures that the variance of the 
activations remains constant across layers. 

2. Batch Normalization: Batch normalization normalizes the activations within 
each mini-batch to have zero mean and unit variance. This helps to mitigate the 
vanishing and exploding gradient problems by ensuring that the input to each 
layer remains stable during training. Given a mini-batch .{x1, x2, . . . , xm}, batch 
normalization transforms each activation .xi as 

. x̂i = xi − μB
√

σ 2
B + ε

,

where .μB and .σ 2
B are the mean and variance of the mini-batch, and . ε is a small 

constant for numerical stability.
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1.13 Statistical Learning Theory 

Statistical learning theory provides a foundation for understanding and analyzing the 
performance of machine learning models. It addresses questions of generalization, 
capacity control, and risk minimization, offering theoretical tools to ensure that 
models not only fit the training data but also perform well on unseen data [ 42, 58]. 
In this chapter, we delve into the foundational concepts of statistical learning theory, 
including risk minimization, VC dimension, and Rademacher complexity, with a 
focus on their applications to modern machine learning models such as transformers. 

1.13.1 Foundations of Statistical Learning 

Risk Minimization 

In statistical learning theory, the goal of a learning algorithm is to find a hypothesis 
. h from a hypothesis class .H that minimizes the expected risk, also known as the 
true risk or population risk. The true risk .R(h) of a hypothesis . h is defined as the 
expected loss over the distribution of the data: 

. R(h) = E(x,y)∼D[�(h(x), y)],

where .� : Y × Y → R is the loss function, .(x, y) is a data point drawn from the 
distribution . D, and .h(x) is the prediction made by the hypothesis . h. 

Empirical Risk Minimization (ERM): Since the true distribution .D is typi-
cally unknown, the true risk cannot be directly minimized. Instead, we mini-
mize the empirical risk .R̂n(h), which is the average loss over the training sample 
.S = {(x1, y1), . . . , (xn, yn)}: 

. R̂n(h) = 1

n

n∑

i=1

�(h(xi ), yi ).

The empirical risk serves as an approximation to the true risk, and the hypothesis 
that minimizes the empirical risk is chosen as the model. The ERM principle seeks 
to find: 

. hERM = argmin
h∈H

R̂n(h).

Remark (Uniform Convergence): For ERM to be effective, we require that the 
empirical risk .R̂n(h) converges uniformly to the true risk .R(h) as the sample size . n
increases. Formally, with high probability, the following bound holds for all .h ∈ H: 

. sup
h∈H

|R(h) − R̂n(h)| ≤ ε(n),
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where .ε(n) decreases as . n increases, reflecting the idea that with more data, the 
empirical risk becomes a better approximation of the true risk. 

Example: Consider a binary classification problem where the loss function is the 
0-1 loss: 

. �(h(x), y) = 1{h(x)�=y}.

The true risk in this case corresponds to the probability that the hypothesis 
misclassifies a randomly chosen example: 

. R(h) = P(x,y)∼D(h(x) �= y),

while the empirical risk is simply the proportion of errors on the training sample: 

. R̂n(h) = 1

n

n∑

i=1

1{h(xi )�=yi }.

Minimizing the empirical risk in this setting corresponds to finding the hypothesis 
that makes the fewest errors on the training data. 

Empirical Risk Versus True Risk 

Generalization Error: The difference between the true risk and the empirical risk is 
known as the generalization error: 

. Generalization Error(h) = R(h) − R̂n(h).

The generalization error quantifies how well the performance of a hypothesis on 
the training data translates to its performance on unseen data. A small generalization 
error indicates that the hypothesis generalizes well, while a large generalization error 
suggests overfitting. 

Generalization Bounds: Statistical learning theory provides bounds on the gen-
eralization error, often in terms of the complexity of the hypothesis class . H. These 
bounds ensure that, with high probability, the true risk of the hypothesis chosen by 
ERM is close to the empirical risk: 

. R(hERM) ≤ R̂n(hERM) + O
(
Complexity(H)√

n

)

,

where .Complexity(H) is a measure of the capacity of the hypothesis class, such as 
the VC dimension or Rademacher complexity. 

Theorem 1.22 (Hoeffding’s Inequality) One of the fundamental results that pro-
vides a generalization bound is Hoeffding’s inequality. For any fixed hypothesis 
.h ∈ H, Hoeffding’s inequality states that



1.13 Statistical Learning Theory 97

. P

(
|R(h) − R̂n(h)| > ε

)
≤ 2 exp

(−2nε2
)
.

This bound shows that as the sample size . n increases, the probability that the 
empirical risk deviates significantly from the true risk decreases exponentially. 

Example: Consider a linear classifier with hypothesis space . H = {h(x) =
sign(w�x) : w ∈ R

d}. The generalization error depends on the complexity of . H, 
which, in this case, can be controlled by the norm of the weight vector . w. Regular-
ization techniques, such as .�2 regularization, are used to control the capacity of the 
hypothesis class, thereby reducing the generalization error. 

1.13.2 VC Dimension and Capacity Control 

Definition and Properties of VC Dimension 

The VC dimension as discussed earlier is a measure of the capacity or complexity 
of a hypothesis class . H. It is defined as the maximum number of points that can be 
shattered by . H. A set of points is said to be shattered by .H if, for every possible 
labeling of the points, there exists a hypothesis in .H that correctly classifies them. 
Formally, the VC dimension of . H, denoted .VC(H),  i  s  

. VC(H) = max{m ∈ N : ∃S ⊂ R
d , |S| = m, S is shattered byH}.

Properties of VC Dimension: 

1. Upper Bound: For any hypothesis class . H, the VC dimension provides an upper 
bound on the capacity of . H.  I  f  .VC(H) = d, then .H cannot shatter any set of 
.d + 1 points. 

2. Implications for Generalization: A high VC dimension implies that the hypothesis 
class is very flexible and capable of fitting complex patterns, which increases the 
risk of overfitting. Conversely, a low VC dimension indicates that the hypothesis 
class is more constrained, which can reduce the risk of overfitting but may also 
limit the ability to capture complex patterns. 

3. Relation to Sample Size: The VC dimension provides a guideline for the sample 
size needed to ensure good generalization. Specifically, to achieve a small gener-
alization error with high probability, the sample size . n should be larger than the 
VC dimension of the hypothesis class. 

Theorem 1.23 (Sauer–Shelah Lemma) The Sauer–Shelah lemma provides a com-
binatorial bound on the number of distinct labelings that a hypothesis class .H can 
produce on a sample of size . n, based on its VC dimension: 

.|HS| ≤
d∑

i=0

(
n

i

)

,
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where .HS is the set of labelings of the sample . S by . H, and .d = VC(H). 

This result is crucial for deriving generalization bounds in terms of the VC 
dimension. 

Example: Consider the hypothesis class of linear classifiers in .R
2: 

. H = {h(x) = sign(w1x1 + w2x2 + b) : (w1, w2) ∈ R
2, b ∈ R}.

The VC dimension of this class is 3 because it can shatter any set of 3 points in 
general position (no 3 points are collinear) but cannot shatter 4 points. 

VC Dimension of Transformer Models 

The VC dimension of deep neural networks, including transformers, is typically 
very high due to the large number of parameters and the flexibility of the network 
architecture. However, the exact VC dimension of a specific model can be challenging 
to determine due to the complexity of the network and the interactions between 
different layers. 

For neural networks with a fixed architecture, the VC dimension can be bounded in 
terms of the number of parameters and the depth of the network. For a network with 
.W parameters and .L layers, the VC dimension is often proportional to .W logW , 
reflecting the fact that deep networks have high capacity but also require careful 
regularization to avoid overfitting. 

Example: Consider a transformer model with multiple layers of self-attention 
and feedforward networks. Each layer introduces a large number of parameters, 
contributing to the overall capacity of the model. The VC dimension of such a model 
would be very high, indicating a strong ability to fit complex data, but also a high 
risk of overfitting without proper regularization and sufficient training data. 

Theorem 1.24 (VC Dimension of Neural Networks) Let .H be the hypothesis class 
of functions representable by a neural network with .W parameters. Then, the VC 
dimension .VC(H) satisfies 

. VC(H) = O(W logW ).

This bound highlights the importance of controlling the number of parameters in 
the network to manage the capacity and generalization ability of the model. 

1.13.3 Rademacher Complexity 

Rademacher complexity is a measure of the richness of a hypothesis class .H based 
on its ability to fit random noise. Unlike VC dimension, which is combinatorial,
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Rademacher complexity provides a data-dependent measure of complexity, making 
it more flexible and often more informative in practical scenarios. Formally, the 
empirical Rademacher complexity of a hypothesis class .H with respect to a sample 
.S = {x1, . . . , xn} is defined as 

. R̂n(H) = Eσ

[

sup
h∈H

1

n

n∑

i=1

σi h(xi )

]

,

where .σ = (σ1, . . . , σn) are i.i.d. Rademacher variables, each taking values .+1 or 
.−1 with equal probability. The Rademacher complexity measures how well the 
hypothesis class .H can fit a random labeling of the data. 

Properties of Rademacher Complexity: 
1. Data Dependence: Rademacher complexity depends on the specific sample . S, 

allowing it to capture the complexity of .H relative to the given data. 
2. Bounding Generalization Error: Rademacher complexity provides a bound on 

the generalization error of the hypothesis chosen by ERM. Specifically, with high 
probability, the following bound holds: 

. R(h) ≤ R̂n(h) + 2R̂n(H) + O
(√

1

n

)

.

This bound shows that the generalization error is controlled by the empirical risk 
and the Rademacher complexity of the hypothesis class. 

For a hypothesis class .H with functions bounded by . B, the Rademacher 
complexity satisfies the following bound: 

. R̂n(H) ≤ B√
n
.

This bound highlights the inverse relationship between the sample size and 
the Rademacher complexity, reflecting the fact that larger samples provide better 
generalization guarantees. 

Example: Consider the class of linear classifiers .H = {h(x) = w�x : ‖w‖ ≤ 1}. 
The Rademacher complexity of this class is bounded by 

. R̂n(H) ≤ 1√
n
.

This indicates that as the sample size increases, the complexity of the hypothesis 
class relative to the data decreases, leading to better generalization.
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Applications to Generalization Analysis 

In transformer models, Rademacher complexity can be used to analyze the gener-
alization ability of different layers or components of the model. For instance, one 
might compute the Rademacher complexity of the self-attention mechanism or the 
feedforward layers to assess their capacity to fit the training data relative to random 
noise. 

Example: Suppose we have a transformer model with a large number of atten-
tion heads and layers. The Rademacher complexity can help determine whether the 
model’s capacity is too high relative to the amount of training data, indicating a poten-
tial risk of overfitting. By regularizing the model or adjusting the architecture (e.g., 
reducing the number of attention heads), we can control the Rademacher complexity 
and improve generalization. 

Let.Htransformer be the hypothesis class corresponding to a transformer model. The 
generalization error of the model is bounded by 

. R(hERM) ≤ R̂n(hERM) + 2R̂n(Htransformer) + O
(√

1

n

)

.

This bound underscores the importance of controlling the complexity of the 
transformer model to ensure good generalization. 

In practice, Rademacher complexity provides a tool for selecting model architec-
tures and regularization strategies that balance fit and generalization. By evaluating 
the Rademacher complexity on a validation set, practitioners can make informed 
decisions about model adjustments, such as pruning layers, reducing the number of 
parameters, or applying stronger regularization. 

1.14 Probabilistic Perspectives on Transformers 

Transformers, like other deep learning models, are often viewed through the lens 
of deterministic optimization. However, a probabilistic perspective, particularly one 
grounded in Bayesian inference, offers a powerful framework for understanding 
and quantifying uncertainty in these models. This chapter explores the application 
of Bayesian inference to transformers, focusing on the computation of posterior 
distributions and the implementation of Bayesian neural networks (BNNs) within 
transformer architectures. These approaches provide insights into model uncertainty, 
leading to more robust and interpretable predictions.
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1.14.1 Bayesian Inference in Transformers 

Bayesian inference is a statistical method that updates the probability estimate for 
a hypothesis as more evidence or information becomes available. It combines prior 
knowledge with observed data to produce a posterior distribution, which quanti-
fies uncertainty about model parameters. This framework is particularly useful in 
deep learning, where models are often highly parameterized, and understanding 
uncertainty is crucial for tasks such as decision-making and risk assessment. 

Posterior Distributions and Uncertainty Quantification 

Posterior Distributions: In a Bayesian framework, the goal is to compute the posterior 
distribution of the model parameters given the observed data. Let. θ denote the param-
eters of a transformer model, and let .D = {(xi , yi )}ni=1 represent the observed data, 
where .xi is the input and .yi is the corresponding output. The posterior distribution 
.p(θ |D) is given by Bayes’ theorem: 

. p(θ |D) = p(D|θ)p(θ)

p(D)
,

where .p(D|θ) is the likelihood, representing the probability of the data given the 
parameters . θ , .p(θ) is the prior distribution, representing the initial beliefs about 
the parameters before observing the data, and .p(D) is the marginal likelihood or 
evidence, which normalizes the posterior distribution. The posterior distribution 
.p(θ |D) encapsulates all the information about the parameters after observing the 
data, including any uncertainty. 

Example: Consider a simple linear regression model where .yi = θ0 + θ1xi + εi , 
with. εi representing Gaussian noise. The likelihood function for a single observation 
.(xi , yi ) is 

. p(yi |xi , θ) = 1√
2πσ 2

exp

(

− (yi − θ0 − θ1xi )2

2σ 2

)

.

Given . n independent observations, the joint likelihood is 

. p(D|θ) =
n∏

i=1

p(yi |xi , θ).

If we assume a prior distribution.p(θ) that is Gaussian (e.g.,.p(θ) ∼ N (μ0, �0)), 
the posterior distribution can be computed analytically or approximated using 
methods such as Markov Chain Monte Carlo (MCMC) or variational inference. 

Uncertainty Quantification: The posterior distribution provides a natural way to 
quantify uncertainty in model predictions. Instead of a single point estimate for . θ , 
the posterior distribution offers a range of plausible values, each associated with a
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probability. This allows for uncertainty-aware predictions, where the model output 
is expressed as a distribution rather than a deterministic value. 

Given a new input . x∗, the predictive distribution for the output .y∗ is obtained by 
marginalizing over the posterior distribution of the parameters: 

. p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ |D)dθ.

This predictive distribution captures both the uncertainty in the model parameters 
and the inherent noise in the data. 

Example: In the case of the linear regression model, the predictive distribution 
for a new input .x∗ is a Gaussian distribution with mean and variance given by 

. E[y∗|x∗,D] = E[θ0|D] + E[θ1|D]x∗,

. Var(y∗|x∗,D) = σ 2 + x∗�Var(θ |D)x∗.

Let . θ be the parameters of a Bayesian model with posterior distribution .p(θ |D). 
The posterior predictive distribution for a new data point .x∗ is given by 

. p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ |D)dθ.

This distribution quantifies the uncertainty in predictions by integrating over the 
posterior distribution of the parameters. 

Bayesian Neural Networks 

A Bayesian neural network (BNN) extends the standard neural network framework 
by treating the network weights as random variables with a prior distribution. Instead 
of learning a single set of weights, BNNs learn a distribution over weights, which 
allows for uncertainty estimation in the model’s predictions. Let .θ = {Wl}Ll=1 repre-
sent the set of weights in a neural network with . L layers. In a BNN, we specify a 
prior distribution over the weights .p(θ) and use Bayesian inference to compute the 
posterior distribution given the data: 

. p(θ |D) = p(D|θ)p(θ)

p(D)
.

Training a BNN involves approximating the posterior distribution.p(θ |D), as exact 
computation is often intractable due to the high dimensionality of the weight space 
and the complexity of the likelihood function. Common methods for approximating 
the posterior include
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1. Variational Inference (VI): In VI, the true posterior .p(θ |D) is approximated 
by a simpler distribution .q(θ |φ), where . φ are the variational parameters. The goal 
is to minimize the Kullback–Leibler (KL) divergence between .q(θ |φ) and the true 
posterior: 

. φ∗ = argmin
φ

KL(q(θ |φ)‖p(θ |D)).

The variational approximation is often chosen to be a Gaussian distribution with 
mean and variance as the variational parameters. 

2. Monte Carlo Dropout: Monte Carlo dropout is a practical approximation tech-
nique where dropout is applied during both training and inference. The posterior dis-
tribution is approximated by sampling multiple forward passes with dropout enabled, 
effectively averaging predictions over different network configurations. 

Example: Consider a BNN with a single hidden layer and a ReLU activation 
function. The weights .W1 and .W2 are treated as random variables with Gaussian 
priors: 

. W1 ∼ N (0, σ 2
1 I ), W2 ∼ N (0, σ 2

2 I ).

The likelihood function is defined based on the output of the network and the 
observed data. Using variational inference, we approximate the posterior distribution 
over .W1 and .W2 by optimizing the variational parameters. 

Uncertainty in Predictions: The predictive distribution in a BNN is obtained by 
marginalizing over the posterior distribution of the weights: 

. p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ |D)dθ.

In practice, this integral is approximated by sampling from the posterior 
distribution of the weights and averaging the predictions: 

. p(y∗|x∗,D) ≈ 1

M

M∑

i=1

p(y∗|x∗, θi ),

where . θi are samples from the approximate posterior distribution. 
In transformer models, Bayesian inference can be applied to the weights of the 

attention layers and feedforward networks. By modeling the weights as random 
variables and learning their posterior distributions, we can quantify uncertainty in 
the model’s predictions, which is particularly useful in applications such as natural 
language processing (NLP) and decision-making under uncertainty. 

For instance, in a Bayesian transformer, the weights of the self-attention mecha-
nism can be treated as random variables with a prior distribution. The posterior dis-
tribution of these weights is learned using variational inference, allowing the model 
to produce uncertainty-aware predictions for tasks such as machine translation or 
text classification.
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Let .θ = {Wl}Ll=1 be the weights of a BNN. The posterior predictive distribution 
for a new input .x∗ is given by 

. p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ |D)dθ.

This distribution captures both the model uncertainty (due to limited data) and 
the epistemic uncertainty (due to uncertainty in the model parameters). 

1.14.2 PAC-Bayes Generalization Bounds 

PAC-Bayesian (PAC-Bayes) theory provides a framework for deriving generaliza-
tion bounds that combine elements of both PAC (Probably Approximately Correct) 
learning theory and Bayesian inference. These bounds offer insights into how well 
a model trained on a finite dataset is expected to perform on unseen data. The PAC-
Bayes approach is particularly relevant for understanding the generalization behavior 
of complex models like transformers, where the capacity of the model and the amount 
of training data both play critical roles. PAC-Bayes theory blends the probabilistic 
interpretation of Bayesian methods with the performance guarantees of PAC learning. 
The core idea is to derive bounds on the generalization error of a learned hypothesis, 
not just in the worst-case scenario, but with respect to a prior distribution over the 
hypothesis space. These bounds are particularly useful for models with high capacity, 
such as transformers, where traditional generalization bounds may be too loose. 

PAC-Bayes Theorem and Applications 

The PAC-Bayes theorem provides a bound on the generalization error of a hypothesis 
. h selected from a hypothesis space. H, where the hypothesis is drawn from a posterior 
distribution .Q that depends on the training data. The bound is given in terms of the 
KL divergence between the posterior distribution .Q and a prior distribution .P over 
. H, as well as the empirical risk .R̂n(h) and the true risk .R(h).  Le  t . D = {(xi , yi )}ni=1
be the training data, and .�(h(x), y) be the loss function for a hypothesis . h.  The  
empirical risk of . h is defined as 

. R̂n(h) = 1

n

n∑

i=1

�(h(xi ), yi ).

The PAC-Bayes theorem states that, with probability at least.1 − δ over the choice 
of the training data, for any posterior distribution.Q over .H and prior distribution. P
over . H, the following bound holds:
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. Eh∼Q[R(h)] ≤ Eh∼Q[R̂n(h)] +
√
KL(Q‖P) + log n

δ

2n
,

where .KL(Q‖P) is the KL divergence between the posterior .Q and the prior . P . 
Interpreting the Bound: 

1. Empirical Risk .R̂n(h): Represents the average error of the hypothesis on the 
training data. 

2. True Risk .R(h): Represents the expected error on new, unseen data. 
3. KL Divergence .KL(Q‖P): Measures how much the posterior distribution . Q

diverges from the prior distribution. P . A smaller KL divergence indicates that the 
posterior is close to the prior, leading to tighter generalization bounds. 

4. Sample Size . n: The bound tightens as the sample size increases, reflecting that 
more data leads to better generalization. 

Applications of PAC-Bayes Theorem: 
1. Model Selection: PAC-Bayes bounds can be used to select models by com-

paring the generalization bounds for different posterior distributions. For instance, 
in a transformer model, one might consider different architectures or regularization 
strategies and choose the one with the lowest PAC-Bayes bound. 

2. Regularization: The KL divergence term in the PAC-Bayes bound encourages 
the posterior distribution to remain close to the prior, effectively regularizing the 
model. This is particularly useful in preventing overfitting, as it penalizes models 
that deviate too much from the prior knowledge encoded in . P . 

Example: Consider a binary classification problem where the hypothesis space. H
consists of linear classifiers. The prior distribution. P might be a Gaussian distribution 
centered on a particular weight vector, representing prior knowledge about the likely 
configuration of the classifier. The posterior .Q is then learned from the data, and 
the PAC-Bayes bound provides a guarantee on how well the classifier is expected to 
perform on new data. 

Theorem 1.25 (PAC-Bayes Theorem) Let .H be a hypothesis class, .P a prior dis-
tribution over . H, and .Q a posterior distribution over . H. With probability at least 
.1 − δ, the generalization error satisfies 

. Eh∼Q[R(h)] ≤ Eh∼Q[R̂n(h)] +
√
KL(Q‖P) + log n

δ

2n
.

This bound provides a principled way to quantify the generalization error of 
models, taking into account both the empirical performance and the complexity of 
the model as measured by the KL divergence.
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Interpreting PAC-Bayes Bounds in Transformers 

Transformers are powerful models with high capacity, often leading to concerns 
about overfitting, especially when the amount of training data is limited. PAC-Bayes 
bounds offer a way to analyze and control the generalization behavior of transformers 
by incorporating prior knowledge and regularizing the learned parameters. 

1. Prior Distribution in Transformers: In the context of transformers, the prior 
distribution .P can encode prior beliefs about the model parameters, such as the 
weights of the attention layers or the feedforward networks. For example, one might 
use a Gaussian prior centered around zero or around pre-trained weights from a 
related task. 

2. Posterior Distribution: The posterior distribution .Q is learned from the 
data, often through techniques like variational inference or Monte Carlo methods. 
The PAC-Bayes bound then provides a measure of how much the learned model 
(represented by . Q) deviates from the prior knowledge (represented by . P). 

3. Generalization Analysis: The PAC-Bayes bound helps in understanding the 
trade-off between fitting the training data and maintaining generalization. A small 
KL divergence between.Q and.P suggests that the model has not deviated too much 
from the prior, which can be a sign of good generalization. Conversely, a large KL 
divergence might indicate overfitting. 

Example: Suppose a transformer model is trained on a natural language processing 
task, such as sentiment analysis. The prior distribution.P might reflect a pre-trained 
transformer on a large language corpus, while the posterior .Q is fine-tuned on the 
sentiment analysis dataset. The PAC-Bayes bound can be used to assess whether the 
fine-tuned model is likely to generalize well to new text data. 

Let .� represent the set of parameters in a transformer model, and let . P(�)

and .Q(�) denote the prior and posterior distributions over these parameters. The 
PAC-Bayes generalization bound for the transformer model is given by 

. E�∼Q[R(�)] ≤ E�∼Q[R̂n(�)] +
√
KL(Q(�)‖P(�)) + log n

δ

2n
.

This bound highlights the importance of selecting appropriate priors and regular-
ization strategies to control the generalization error in transformer models. 

The PAC-Bayes framework naturally incorporates regularization by penalizing 
posterior distributions that deviate significantly from the prior. This can be imple-
mented in transformers through techniques like weight decay, which can be viewed 
as imposing a Gaussian prior on the model weights. They can guide the tuning of 
hyperparameters, such as learning rates and regularization strengths. By evaluating 
how these choices affect the KL divergence and the empirical risk, one can optimize 
the generalization performance of the transformer model.
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1.14.3 Generalization Performance in Practice 

The theoretical foundations of generalization provide a robust framework for under-
standing how machine learning models, including transformers, perform on unseen 
data. However, practical implementation often involves empirical validation, model 
selection, and hyperparameter tuning to optimize generalization performance. This 
section explores empirical studies on generalization and discusses strategies for 
model selection and hyperparameter tuning in the context of transformers, using 
mathematical analysis to support these practices. Generalization performance refers 
to a model’s ability to perform well on new, unseen data, beyond the training set. 
While theoretical bounds such as PAC-Bayes offer insights into generalization, 
empirical studies provide practical evidence and guidance for enhancing model per-
formance. The interplay between theory and practice is crucial in developing models 
that are both robust and efficient. 

Empirical Studies on Generalization 

Empirical studies on generalization often involve comparing the performance of 
models on training data versus validation and test data. These studies help iden-
tify factors that contribute to overfitting, underfitting, or optimal generalization. For 
transformers, key factors include the size of the model, the amount of training data, 
the choice of regularization techniques, and the complexity of the task. 

Let.Dtrain represent the training dataset,.Dval the validation dataset, and.Dtest the test 
dataset. The generalization error .εgen is typically defined as the difference between 
the test error .R̂test(h) and the training error .R̂train(h): 

. εgen = R̂test(h) − R̂train(h),

where. h is the hypothesis (or model) selected during training. A small generalization 
error indicates that the model has successfully learned to generalize from the training 
data to new data, while a large generalization error suggests overfitting. 

Example: Consider a transformer model trained on a dataset of English sentences 
for a machine translation task. The training error is measured as the average trans-
lation error on the training set, while the validation and test errors are measured on 
held-out datasets. An empirical study might involve training the model with vary-
ing amounts of data or different regularization strengths and observing how the 
generalization error changes. 

Overfitting and Underfitting: Overfitting occurs when the model is too complex 
relative to the amount of training data, leading to low training error but high test error. 
This is often indicated by a large generalization error. Underfitting occurs when the 
model is too simple to capture the underlying patterns in the data, leading to high 
training and test errors.
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Regularization: Empirical studies often explore the impact of regularization tech-
niques on generalization. Regularization methods, such as weight decay or dropout, 
penalize model complexity, effectively reducing the variance and improving gener-
alization. The effect of regularization can be analyzed mathematically by adding a 
penalty term to the loss function: 

. Lreg(h) = L(h) + λ�(h),

where . λ is the regularization strength and .�(h) is a regularization term (e.g., . ‖h‖22
for weight decay). 

Remark (Regularization and Generalization): Let.R̂λ(h)denote the regularized 
empirical risk. The generalization bound for the regularized model is 

. R(h) ≤ R̂λ(h) + O
(√

Complexity(H) + λ�(h)

n

)

,

where . n is the sample size and .Complexity(H) is a measure of the model class 
complexity. This bound shows that regularization can reduce the generalization error 
by controlling model complexity. 

Empirical studies on transformers have shown that 

1. Model Size Versus Data Size: Larger transformers generally perform better when 
trained on large datasets, but they are prone to overfitting on smaller datasets. 

2. Layer Normalization and Dropout: Techniques like layer normalization and 
dropout are crucial for stabilizing training and improving generalization. 

3. Transfer Learning: Fine-tuning pre-trained transformers on specific tasks often 
leads to better generalization than training from scratch, due to the regularization 
effect of the pre-training phase. 

Example: An empirical study might involve training several transformer models 
of varying sizes on a dataset like GLUE (General Language Understanding Eval-
uation) and evaluating their performance on the test set. The study could measure 
how generalization performance changes with different amounts of pre-training data, 
regularization techniques, and hyperparameters. 

Model Selection and Hyperparameter Tuning 

Model selection involves choosing the best hypothesis from a set of candidates based 
on their expected generalization performance. In practice, this is often done using 
cross-validation, where the data is split into several folds, and the model is trained 
and validated on different subsets. The model with the best average performance 
across the folds is selected. 

Let .H = {h1, h2, . . . , hk} be a set of candidate models, and let .Dval be the 
validation set. The selected model .h∗ is the one that minimizes the validation error:
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. h∗ = argmin
h∈H

R̂val(h).

The challenge is to ensure that the validation set is representative of the test set 
so that the selected model generalizes well. 

Hyperparameter tuning is the process of optimizing the parameters that control the 
learning process, such as the learning rate, regularization strength, and network archi-
tecture. This is typically done using grid search, random search, or more sophisticated 
methods like Bayesian optimization. 

Let .λ ∈ � represent a hyperparameter. The goal is to find the optimal .λ∗ that 
minimizes the validation error: 

. λ∗ = argmin
λ∈�

R̂val(h(λ)),

where .h(λ) is the model trained with hyperparameter . λ. 
In a transformer model, the learning rate . η and dropout rate . p are crucial hyper-

parameters. An empirical study might involve training several models with differ-
ent combinations of . η and . p, evaluating their performance on a validation set, and 
selecting the combination that results in the best generalization. 

Cross-validation is a common technique for model selection and hyperparameter 
tuning. In .k-fold cross-validation, the data is split into . k subsets, and the model is 
trained on .k − 1 subsets while validating on the remaining subset. This process is 
repeated . k times, and the average validation error is used to select the best model or 
hyperparameters. 

Theorem 1.26 (Generalization in Cross-Validation) Let .R̂CV(h) be the cross-
validated error for a model . h. The generalization error is bounded by 

. R(h) ≤ R̂CV(h) + O
(√

1

n

)

,

where . n is the size of the dataset. 

This bound indicates that cross-validation provides a reliable estimate of the gener-
alization error. A practical example of hyperparameter tuning in transformers might 
involve optimizing the number of attention heads and the size of the feedforward 
network. The model is trained on different configurations and validated using cross-
validation. The configuration with the lowest cross-validated error is chosen for 
deployment. 
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Chapter 2 
Word Embeddings and Positional 
Encoding 

2.1 Word Embeddings 

Word embeddings are fundamental in NLP, providing a way to represent words 
as vectors in a continuous vector space. This representation enables the capture of 
semantic relationships between words, allowing models to perform complex lin-
guistic tasks such as translation, sentiment analysis, and information retrieval. This 
section delves into the mathematical foundations of word embeddings, focusing on 
vector space models and the Word2Vec framework, which includes the Skip-gram 
and Continuous Bag of Words (CBOW) models. 

The mathematical foundation of word embeddings lies in the representation of 
words as vectors in a high-dimensional vector space. The goal is to map words to 
vectors in such a way that the geometric relationships between the vectors capture 
meaningful semantic relationships between the words. 

2.1.1 Vector Space Models 

In vector space models, each word. w in a vocabulary. V is represented by a vector. vw

in a .d-dimensional vector space .R
d . The embedding space is typically learned from 

a large corpus of text, with the vectors being adjusted to reflect the contextual usage 
of words. Given a corpus .C consisting of a sequence of words .{w1, w2, . . . , wn}, 
the objective is to find a mapping .φ : V → R

d such that semantically similar words 
have embeddings that are close in the vector space. 

A common measure of similarity between two word vectors .vw and .vw′ is the 
cosine similarity, defined as 

. cos(vw, vw′) = vw · vw′

‖vw‖‖vw′ ‖ ,
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where .vw · vw′ is the dot product of the two vectors, and .‖vw‖ and .‖vw′ ‖ are their 
magnitudes. Cosine similarity ranges from –1 to 1, with 1 indicating that the vectors 
are identical, –1 indicating that they are diametrically opposed, and 0 indicating 
orthogonality. 

Example: Consider the words “king” and “queen.” In a well-trained embedding 
space, the vector .vking should be close to .vqueen, reflecting the semantic similarity 
between these words. Moreover, the vector difference.vking − vqueen might be similar 
to the vector difference .vman − vwoman, capturing the analogy “king is to queen as 
man is to woman.” 

One approach to constructing word embeddings is to use a word co-occurrence 
matrix . M , where each entry .Mi j represents the number of times word .wi co-occurs 
with word .w j within a specified context window. The context window is typically 
defined as a fixed number of words before and after the target word. Given the 
co-occurrence matrix . M , a variety of methods can be applied to derive word vec-
tors, such as matrix factorization techniques (e.g., singular value decomposition) or 
probabilistic models. 

Theorem 2.1 (Low-Rank Approximation) Let.M be the word co-occurrence matrix, 
and suppose .M can be approximated by a low-rank matrix .Mk of rank . k: 

. M ≈ Mk = Uk�kV
�
k ,

where .Uk and .Vk are matrices whose columns are the left and right singular vectors 
of . M, and .�k is a diagonal matrix containing the top . k singular values. The rows of 
.Uk and .Vk provide .k-dimensional word embeddings that capture the most significant 
relationships in the co-occurrence data. 

The spectral properties of the word co-occurrence matrix provide insights into 
the structure of the embedding space. The singular values in.�k represent the impor-
tance of the corresponding singular vectors in capturing the variance in the data. By 
selecting the top . k singular values, we obtain a reduced-dimensional representation 
that retains the most significant information. 

In practice, one might construct a co-occurrence matrix from a corpus of English 
text and then apply Singular Value Decomposition (SVD) to obtain a low-rank 
approximation. The resulting word vectors can then be used in various NLP tasks, 
such as word similarity, analogy solving, and text classification. 

2.1.2 Word2Vec: Skip-gram and CBOW 

Word2Vec is a popular framework for learning word embeddings, introduced by [ 3]. 
It consists of two main models: Skip-gram and Continuous Bag of Words (CBOW). 
Both models are based on the distributional hypothesis, which posits that words 
appearing in similar contexts tend to have similar meanings.
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The Skip-gram model aims to predict the context words surrounding a 
target word. Given a word .wt in the corpus, the model predicts the words 
.wt− j , . . . , wt−1, wt+1, . . . , wt+ j within a context window of size .2 j . Formally, 
the objective is to maximize the following log-likelihood: 

. LSG = 1

T

T∑

t=1

∑

− j≤k≤ j,k �=0

log p(wt+k |wt),

where .p(wt+k |wt ) is the probability of observing the context word .wt+k given the 
target word .wt . This probability is modeled using the softmax function: 

. p(wt+k |wt ) = exp(v�
wt+k

vwt )∑
w′∈V exp(v�

w′vwt )
,

where.vwt and.vwt+k are the embeddings of the target and context words, respectively. 
Computing the softmax function for all words in the vocabulary is computationally 

expensive. To mitigate this, Word2Vec uses negative sampling, where the model only 
updates a small number of negative samples (words that do not appear in the context) 
along with the positive context words. The negative sampling objective is 

. LNS = log σ(v�
wt+k

vwt ) +
K∑

i=1

Ewi∼Pn(w)[log σ(−v�
wi
vwt )],

where .σ(x) = 1
1+e−x is the sigmoid function, .K is the number of negative samples, 

and .Pn(w) is the noise distribution. 
The CBOW model is the inverse of Skip-gram. Instead of predicting context words 

from a target word, CBOW predicts the target word from its surrounding context. 
The objective function for CBOW is 

. LCBOW = 1

T

T∑

t=1

log p(wt |wt− j , . . . , wt−1, wt+1, . . . , wt+ j ),

where the context words are combined (e.g., averaged) to predict the target word.wt . 
Both Skip-gram and CBOW models implicitly factorize a word-context co-

occurrence matrix, with the learned word vectors corresponding to the low-
dimensional representations of words that capture the underlying semantic structure. 
The embeddings are learned by optimizing the respective objective functions using 
SGD or other optimization methods. 

Remark (Representation Power of Word2Vec): Let .vw be the embedding of 
word .w learned by Word2Vec. The learned embeddings capture not only word sim-
ilarity but also syntactic and semantic relationships between words. Specifically, for
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words.w1, w2, w3, w4, if the relationship.w1 is to.w2 as.w3 is to.w4 holds (e.g., “king” 
is to “queen” as “man” is to “woman”), then 

. vw1 − vw2 ≈ vw3 − vw4 .

This property is known as the vector offset property and is a key feature of the 
embeddings produced by Word2Vec. 

Example: Consider the analogy task: “king” is to “queen” as “man” is to “woman.” 
The Word2Vec model learns embeddings such that 

. vking − vqueen ≈ vman − vwoman.

This relationship can be tested by finding the word vector that is closest to the 
result of .vking − vman + vwoman, which should ideally be .vqueen. 

Next we’ll continue exploring the mathematical foundations and different models 
used to generate word embeddings, with a focus on GloVe, FastText, and contex-
tual embeddings like ELMo and BERT. These models extend the principles intro-
duced in the Word2Vec framework by incorporating global corpus statistics, subword 
information, and contextual dependencies, providing richer and more nuanced word 
representations. 

2.1.3 GloVe: Global Vectors for Word Representation 

GloVe is based on the idea that word embeddings can be learned by leveraging 
global co-occurrence statistics from a corpus. Unlike Word2Vec, which relies on local 
context windows, GloVe constructs embeddings by directly factorizing a word co-
occurrence matrix. The core idea is to model the ratios of co-occurrence probabilities 
rather than the probabilities themselves. Let .X be the word co-occurrence matrix 
where .Xi j denotes the number of times word .w j appears in the context of word .wi . 
GloVe seeks to find word vectors.vw and context vectors.vc such that their dot product 
approximates the logarithm of the co-occurrence counts: 

. v�
wvc + bw + bc = log(Xwc),

where .bw and .bc are bias terms associated with the word and context, respectively. 
The objective function in GloVe is to minimize the weighted least squares error: 

. J =
|V |∑

i, j=1

f (Xi j )
(
v�
i v j + bi + b j − log(Xi j )

)2
,

where . f (Xi j ) is a weighting function that controls the influence of different co-
occurrence pairs. Typically, the weighting function is defined as
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. f (Xi j ) =
{(

Xi j

Xmax

)α

if Xi j < Xmax,

1 if Xi j ≥ Xmax,

where. α and.Xmax are hyperparameters. This function downweights the influence of 
very frequent word pairs and emphasizes mid-frequency pairs, which are considered 
more informative. 

The logarithmic function in the objective reflects the intuition that the difference in 
word meanings should be proportional to the logarithm of their co-occurrence prob-
ability. The symmetry of the co-occurrence matrix leads to symmetric embeddings, 
i.e., .vw ≈ vc, resulting in embeddings that capture global corpus-wide relationships 
between words. 

Theorem 2.2 (Existence of GloVe Embeddings) Given a co-occurrence matrix . X
and appropriate choices of the weighting function. f (Xi j ), there exist word vectors. vw

and context vectors.vc that satisfy the GloVe objective function. The uniqueness of the 
solution depends on the specific choice of initialization and optimization algorithm. 

Example: For words “ice” and “steam,” GloVe might learn embeddings .vice and 
.vsteam such that the difference between these vectors reflects the difference between 
the co-occurrence contexts of these words (e.g., “cold” is more associated with “ice” 
than “steam”). 

Advantages of GloVe: 

1. Global Information: GloVe captures both local context and global statistical 
information, providing more balanced embeddings. 

2. Interpretability: The model’s reliance on co-occurrence ratios makes the learned 
embeddings interpretable, often reflecting intuitive analogies. 

2.1.4 FastText Embeddings 

FastText, an extension of Word2Vec developed by Facebook AI, addresses the limi-
tation of treating each word as an atomic unit by incorporating subword information 
([ 1, 2]). Words are represented not only by their vectors but also by vectors of 
their constituent character n-grams. This allows FastText to generate embeddings for 
out-of-vocabulary (OOV) words and to capture morphological information. 

Let .w be a word and .G(w) be the set of character n-grams generated from . w.  In  
FastText, the word embedding .vw is computed as the sum of the embeddings of its 
n-grams: 

. vw =
∑

g∈G(w)

vg,

where .vg is the vector representation of n-gram . g.  The  se  t  .G(w) typically includes 
all n-grams of length 3 to 6, as well as the word itself.
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FastText extends the Skip-gram model by predicting the context words not only 
from the word .w itself but also from its subwords. The objective is to maximize the 
log-likelihood: 

. LFastText = 1

T

T∑

t=1

∑

− j≤k≤ j,k �=0

log p(wt+k |vw),

where .vw is the subword-based embedding defined above. 
Advantages of FastText: 

1. Handling Morphology: By considering subword information, FastText captures 
morphological variations (e.g., “run,” “running,” “runner”). 

2. OOV Words: FastText can generate embeddings for words not seen during training 
by summing the embeddings of their n-grams. 

Remark (FastText Embedding Construction): Let .Vtrain be the training vocab-
ulary, and let .wnew be a word not in .Vtrain. The embedding .vwnew can be constructed 
as 

. vwnew =
∑

g∈G(wnew)

vg,

where .vg are the pre-trained n-gram embeddings from the model. This ensures that 
.wnew has a meaningful embedding even if it was not present in the training data. 

Example: For the word “unhappiness,” which may not be in the training vocab-
ulary, FastText would construct its embedding by summing the embeddings of its 
n-grams, such as “un,” “happiness,” “ness,” etc., capturing both the root word “happy” 
and the prefix/suffix information. 

2.1.5 Contextual Word Embeddings (e.g., ELMo, BERT) 

Traditional word embeddings like Word2Vec, GloVe, and FastText generate static 
vectors for each word, meaning the vector for a word like “bank” is the same regard-
less of whether the context refers to a financial institution or the side of a river. Con-
textual word embeddings, introduced with models like ELMo and BERT, address 
this limitation by generating word representations that are context dependent. 

ELMo (Embeddings from Language Models) embeddings ([ 6]) are generated 
from a deep, bi-directional LSTM language model. For a given word.wt in a sentence, 
ELMo generates its embedding by considering the entire sentence, both before and 
after .wt : 

. vELMo(wt ) = f ({h(k)
t }Lk=1),

where .h(k)
t is the hidden state at position . t in the .k-th layer of the LSTM, and . f (·)

is a function (e.g., a weighted sum) that combines these hidden states into a single 
embedding.
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BERT (Bidirectional Encoder Representations from Transformers) extends the 
idea of contextual embeddings by using a transformer architecture, which allows 
the model to capture bidirectional context at every layer. For a given word . wt

in a sentence, BERT’s embedding is obtained from the final hidden layer of the 
transformer: 

. vBERT(wt ) = Transformer(wt , {w1, . . . , wT }),

where the transformer function processes the entire sentence .{w1, . . . , wT } and 
produces context-aware embeddings for each word. 

BERT embeddings are inherently contextual, meaning that the same word can 
have different embeddings depending on its usage in a sentence. This is achieved 
through the self-attention mechanism, which computes attention scores for each word 
relative to every other word in the sentence. 

Let .wt and .w′
t be two occurrences of the same word in different sentences . S and 

. S′. The embeddings .vBERT(wt ) and .vBERT(w′
t ) satisfy 

. vBERT(wt ) �= vBERT(w′
t ),

if the contexts . S and .S′ differ significantly. This property allows BERT to capture 
the polysemy and context-specific meanings of words. 

Example: For the word “bank” in the sentences “I deposited money in the bank” 
and “The boat was near the river bank,” BERT will generate different embeddings 
for “bank,” reflecting its distinct meanings in these contexts. 

Applications of Contextual Embeddings: 

1. Named Entity Recognition (NER): Contextual embeddings allow for more 
accurate NER by considering the context in which a word appears. 

2. Question Answering (QA): BERT has been particularly successful in QA tasks, 
where understanding the context of a question and its potential answers is crucial. 

2.1.6 Properties of Embedding Spaces 

Word embeddings map words to points in a high-dimensional vector space. The 
relationships between these points reflect linguistic properties, and these relationships 
can be analyzed using mathematical tools such as cosine similarity and Euclidean 
distance. Additionally, tasks like word analogy and metrics like embedding quality 
scores help evaluate the effectiveness of these embeddings. 

Cosine Similarity 

Cosine similarity is a measure of similarity between two non-zero vectors in an 
inner product space. It is defined as the cosine of the angle between the two vectors,
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which is equivalent to the dot product of the vectors normalized by their magnitudes. 
Mathematically, for two vectors.v1 and.v2 in a vector space.R

d , the cosine similarity 
.cos(v1, v2) is given by 

. cos(v1, v2) = v1 · v2
‖v1‖‖v2‖ =

∑d
i=1 v1,iv2,i√∑d

i=1 v2
1,i

√∑d
i=1 v2

2,i

,

where .v1 · v2 denotes the dot product, and .‖v1‖ and .‖v2‖ are the Euclidean norms 
(magnitudes) of .v1 and . v2, respectively. 

Properties: 

1. Range: Cosine similarity ranges from –1 to 1. A cosine similarity of 1 indicates that 
the vectors are identical in direction, 0 indicates orthogonality, and –1 indicates 
that the vectors point in opposite directions. 

2. Interpretation: In the context of word embeddings, a high cosine similarity 
between two word vectors suggests that the words have similar meanings or 
appear in similar contexts. 

Example: Consider the word vectors .vking and .vqueen. If these vectors are trained 
effectively, the cosine similarity.cos(vking, vqueen) should be close to 1, reflecting their 
semantic similarity. 

Theorem 2.3 (Cauchy–Schwarz Inequality) The Cauchy–Schwarz inequality 
underpins the cosine similarity measure. It states that for any vectors .v1, v2 in 
.R

d , 
. |v1 · v2| ≤ ‖v1‖‖v2‖,

with equality if and only if .v1 and .v2 are linearly dependent. This ensures that the 
cosine similarity is well defined and bounded between –1 and 1. 

Euclidean Distance 

Euclidean distance is a measure of the “straight-line” distance between two points 
in a Euclidean space. For vectors .v1, v2 ∈ R

d , the Euclidean distance .d(v1, v2) is 
defined as 

. d(v1, v2) = ‖v1 − v2‖ =
√√√√

d∑

i=1

(v1,i − v2,i )2.

In word embeddings, Euclidean distance is often used to measure the dissimilarity 
between words. Words with similar meanings tend to have smaller Euclidean dis-
tances between their embeddings, while words with different meanings have larger 
distances.
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Example: Consider the word vectors .vcat and .vdog. The Euclidean distance 
.d(vcat, vdog) should be relatively small, reflecting the semantic similarity between 
these words. 

Theorem 2.4 (Pythagorean Theorem) In a Euclidean space, if .v1 and .v2 are 
orthogonal (i.e., .v1 · v2 = 0), then the Euclidean distance satisfies 

. d(v1, v2)2 = ‖v1‖2 + ‖v2‖2.

This relationship is fundamental in understanding the geometric structure of the 
embedding space. 

Word Analogy 

A word analogy task tests the ability of word embeddings to capture linguistic rela-
tionships. Given a pair of words .(a : b), the task is to find a word . d such that the 
relationship.c : d is analogous to.a : b. The underlying assumption is that the vector 
difference .va − vb should be approximately equal to .vc − vd . 

Given vectors .va, vb, vc, the analogy task involves solving 

. vd = vc + (vb − va).

The word. d is then chosen as the word whose vector.vd is closest to this target vector, 
typically using cosine similarity or Euclidean distance. 

Example: In the famous analogy “king is to queen as man is to woman,” the task 
is to find .vwoman given .vking − vqueen ≈ vman − vwoman. The word vector closest to 
.vqueen − vking + vman is expected to be .vwoman. 

Remark (Vector Offset Property): Let .va, vb, vc, vd be word vectors such that 
the relationships.a : b and.c : d are analogous. Then, under the vector offset property, 
the relationship satisfies 

. va − vb ≈ vc − vd ,

which implies 
. vd ≈ vc + (vb − va).

This property is crucial for solving analogy tasks and is a hallmark of well-
structured embedding spaces. 

Embedding Quality Metrics 

Intrinsic evaluation metrics assess the quality of word embeddings based on their 
geometric properties, without reference to downstream tasks. Common metrics 
include
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1. Word Similarity: Measures the correlation between the cosine similarity of 
word pairs and human-judged similarity scores. Spearman’s rank correlation is often 
used to compare the rankings of word pairs. 

2. Analogy Accuracy: The percentage of correct answers in analogy tasks, such 
as “king is to queen as man is to woman.” 

3. Cluster Tightness: Evaluates how well word embeddings cluster semantically 
similar words together. Can be quantified using measures like intra-cluster distance 
and inter-cluster distance. 

Extrinsic Evaluation Metrics: Extrinsic metrics evaluate embeddings based on 
their performance in downstream tasks, such as text classification, sentiment analysis, 
or named entity recognition (NER). Common metrics include 

1. Task-Specific Accuracy: The accuracy of a model that uses word embeddings 
as features in a supervised task. 

2. Transfer Learning Performance: The effectiveness of pre-trained embeddings 
when fine-tuned on a specific task. 

Let.{(wi , w j )} be a set of word pairs with human-judged similarity scores.si j .  The  
word similarity score . ρ is given by the Spearman rank correlation between .si j and 
the cosine similarity of the embeddings: 

. ρ = 1 − 6
∑

(i, j)(rsi j − rcos(wi ,w j ))
2

n(n2 − 1)
,

where.rsi j and.rcos(wi ,w j ) are the ranks of the human-judged similarity and the cosine 
similarity, respectively, and . n is the number of word pairs. 

Example: Suppose we have a set of word pairs with human-judged similar-
ity scores. We compute the cosine similarity between the corresponding word 
embeddings and evaluate the correlation using Spearman’s rank correlation. A 
high correlation indicates that the embeddings capture human-perceived similarities 
effectively. 

2.1.7 Advanced Embedding Techniques 

Traditional word embeddings, such as those produced by Word2Vec or GloVe, 
treat words as atomic units, which can lead to challenges in handling out-of-
vocabulary (OOV) words, morphological variations, and multilingual contexts. 
Advanced embedding techniques address these issues by integrating finer grained 
linguistic units and by mapping words across languages in a shared vector space.
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Subword Information 

Word embeddings that rely solely on word-level representations struggle with OOV 
words and morphological variations. For instance, words like “running,” “runner,” 
and “ran” share a common root but may have distinct embeddings in a purely word-
based model. By incorporating subword information, embeddings can better capture 
morphological patterns and generalize to OOV words. 

Let .w be a word in the vocabulary . V , and let .G(w) denote the set of subword 
units (such as character n-grams) derived from . w. In a subword-based model, the 
word embedding.vw is computed as the sum (or another aggregation function) of the 
embeddings of its constituent subwords: 

. vw =
∑

g∈G(w)

vg,

where .vg is the vector representation of the subword . g. 
Example: Consider the word “happiness.” It can be decomposed into subwords 

like “happ,” “iness,” “ness,” etc. The embedding for “happiness” is then the sum of 
the embeddings for these subwords: 

. vhappiness = vhapp + viness + vness.

This allows the model to capture both the root word “happy” and the suffix “ness,” 
leading to more robust embeddings that can generalize across different forms of the 
word. 

FastText is a prominent example of a model that incorporates subword informa-
tion. The model learns embeddings not only for entire words but also for character 
n-grams, allowing it to generate embeddings for OOV words by summing the vectors 
of their n-grams. 

Theorem 2.5 (Universal Approximation with Subwords) Let . V be a finite vocabu-
lary and .G(w) the set of subwords for each word .w ∈ V . The space of all possible 
word embeddings .Rd can be approximated to arbitrary precision by the sum of 
subword embeddings .vg for sufficiently large . d. Formally, for any word embedding 
.vw ∈ R

d , there exists a set of subword embeddings .{vg}g∈G(w) such that 

. vw =
∑

g∈G(w)

vg + ε,

where . ε is an arbitrarily small error term. 

This theorem underscores the ability of subword-based models to approximate 
word embeddings effectively, even for words not seen during training.
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Character-Level Embeddings 

Character-level embeddings provide an even finer granularity than subword models 
by representing words as sequences of individual characters. This approach is partic-
ularly useful for languages with rich morphology, for handling OOV words, and for 
processing noisy text (e.g., social media data) where spelling variations are common. 

Let .w be a word composed of characters .{c1, c2, . . . , cn}. The character-level 
embedding.vw is derived by applying a function. f to the embeddings of the individual 
characters .vci : 

. vw = f (vc1 , vc2 , . . . , vcn ),

where . f can be a recurrent neural network (RNN), convolutional neural network 
(CNN), or another appropriate function. 

Example: For the word “apple,” with characters.{a, p, p, l, e}, the character-level 
embedding might be computed as 

. vapple = RNN(va, vp, vp, vl , ve),

where the RNN processes the sequence of character embeddings to produce a single 
word-level embedding. 

Convolutional Neural Networks (CNNs) for Character Embeddings: CNNs are 
often used to extract features from character sequences. The input sequence is 
convolved with multiple filters to produce a set of feature maps, which are then 
aggregated (e.g., via max-pooling) to produce the final word embedding: 

. vw = max-pool(ReLU(W ∗ vchars + b)),

where.W is a filter matrix,. ∗ denotes convolution, and.vchars is the matrix of character 
embeddings. 

Remark (Character Embedding Generalization): Character-level models pos-
sess a strong generalization capability because they are not tied to a specific vocabu-
lary. Given a finite character set. C and any word. w composed of characters from. C,  the  
embedding.vw can be constructed by the character model, ensuring that even unseen 
words can be embedded meaningfully. Formally, for any word.w = {c1, c2, . . . , cn}, 

. vw = f (vc1 , vc2 , . . . , vcn ),

where . f is a function that can generalize across the entire character set . C. 
Character-level models are particularly effective in languages with complex 

morphology, such as Finnish or Turkish, where words can have many inflected 
forms. By processing the character sequence directly, these models can capture the 
morphological structure without requiring extensive vocabulary coverage.
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Cross-Lingual Embeddings 

Cross-lingual embeddings map words from different languages into a shared vec-
tor space, enabling direct comparison and translation between languages. These 
embeddings are essential for multilingual NLP tasks, such as machine translation, 
cross-lingual information retrieval, and multilingual sentiment analysis. 

Let .V (1) and .V (2) be the vocabularies of two languages, .L1 and .L2, respectively. 
Cross-lingual embeddings aim to find mappings.φ1 : V (1) → R

d and. φ2 : V (2) → R
d

such that words with similar meanings in .L1 and .L2 have close embeddings in the 
shared space .R

d . 
Alignment Techniques: 
1. Supervised Alignment: Given a bilingual dictionary .{(w(1)

i , w
(2)
i )} with pairs 

of equivalent words .w(1)
i ∈ V (1) and .w(2)

i ∈ V (2), the embeddings are aligned by 
minimizing the distance between the mapped pairs: 

. min
W

∑

i

‖Wφ1(w
(1)
i ) − φ2(w

(2)
i )‖2,

where .W is a linear transformation matrix that aligns the embeddings of .L1 to the 
space of .L2. 

2. Unsupervised Alignment: In the absence of a bilingual dictionary, unsupervised 
techniques align the embeddings by matching the geometric structures of the mono-
lingual spaces. Techniques such as adversarial training and Procrustes alignment are 
used to find the optimal mapping. 

Theorem 2.6 (Existence of a Shared Embedding Space) Given two languages . L1

and .L2, with corresponding embedding spaces .Rd1 and .Rd2 , there exists a shared 
embedding space .Rd and mappings .φ1 : Rd1 → R

d and .φ2 : Rd2 → R
d such that 

semantically equivalent words from .L1 and .L2 are close in the shared space. 
Formally, for equivalent words .w1 and .w2, 

. ‖φ1(w1) − φ2(w2)‖ ≤ ε,

where . ε is a small error term that depends on the alignment technique. 

Example: In a cross-lingual setting, the word “apple” in English might be mapped 
close to “manzana” in Spanish. The shared embedding space allows direct compar-
isons between words from different languages, facilitating tasks like cross-lingual 
sentiment analysis. 

Applications: 
1. Machine Translation: Cross-lingual embeddings are used to map source-

language words to target-language words, improving translation quality by lever-
aging shared semantic structures.
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2. Cross-lingual Information Retrieval: These embeddings enable the retrieval 
of documents in one language based on queries in another, expanding the reach of 
information access across languages. 

2.2 Positional Encoding 

In transformer architectures, positional encoding is a crucial component that allows 
the model to incorporate information about the order of tokens in a sequence. Since 
transformers lack the sequential inductive bias of RNNs, positional encoding pro-
vides a mechanism for capturing the relative and absolute positions of tokens, 
enabling the model to understand the structure of the input data. This section 
explores the need for positional encoding, its mathematical formulation, and various 
techniques for implementing it. 

2.2.1 Need for Positional Encoding 

Transformers process input sequences in parallel, unlike RNNs or CNNs, which have 
an inherent notion of sequence order due to their sequential or hierarchical structure. 
However, language and many other types of data are inherently sequential, where 
the order of elements carries significant meaning. For instance, in the sentence “The 
cat sat on the mat,” the meaning depends on the specific order of the words. Without 
positional information, a transformer would treat the sentence as a bag of words, 
losing the sequential context that is critical for understanding. 

Given a sequence of tokens.{x1, x2, . . . , xn}, a transformer model processes these 
tokens independently and simultaneously. To enable the model to recognize the 
position of each token, we need to inject positional information into the model’s 
input. This is accomplished by adding or concatenating a positional encoding vector 
to the input embeddings. 

Mathematically, let .E = [e1, e2, . . . , en] represent the input embeddings, where 
. ei is the embedding of token. xi . The positional encoding adds a positional vector . pi
to each . ei , resulting in a modified input: 

. E′ = [e1 + p1, e2 + p2, . . . , en + pn].

This allows the transformer to use positional information when processing the 
sequence. 

Example: Consider the sequence “I saw the man with the telescope.” The meaning 
of the sentence depends on whether “with the telescope” modifies “saw” or “man.” 
Without positional encoding, a transformer might not be able to disambiguate these 
meanings because it lacks information about the relative positions of the tokens.
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2.2.2 Mathematical Formulation 

Positional encoding can be implemented in several ways, each with its own mathe-
matical formulation. The choice of encoding affects how the model perceives posi-
tional relationships within the input sequence. Below, we explore three common 
approaches: sinusoidal positional encoding, learned positional encoding, and relative 
positional encoding. 

Sinusoidal Positional Encoding 

The sinusoidal positional encoding method, introduced in the original Transformer 
paper by [ 7], uses sinusoidal functions to encode positions. For a sequence of length 
. n, the positional encoding for position . i is a vector .pi defined as 

. pi =
[
sin

(
i

100002 j/d

)
, cos

(
i

100002 j/d

)]d/2−1

j=0

,

where . i is the position index, . j is the dimension index, and . d is the dimensionality 
of the positional encoding. 

The encoding is constructed so that each dimension of the positional vector 
corresponds to a sinusoid with a different frequency. 

Properties: 
1. Periodicity: The sinusoidal functions are periodic, which means that the posi-

tional encoding is able to capture relative positions. Specifically, for any two positions 
. i and . k, the difference .pi − pk encodes the relative distance between . i and . k. 

2. Smoothness: The encoding changes smoothly with position, which is beneficial 
for capturing the continuous nature of sequential data. 

3. Interpretability: The use of sine and cosine functions of varying frequencies 
ensures that each position has a unique encoding, and the relative differences between 
positions are captured in a manner that is independent of the absolute sequence length. 

Remark (Orthogonality of Encodings): For any fixed position. i , the sinusoidal 
positional encoding .pi is nearly orthogonal to the encoding of a position .i + k for 
large. k. Specifically, the dot product.pi · pi+k decreases as. k increases. This property 
ensures that the positional encodings are distinct and help the model differentiate 
between different positions in the sequence. 

Example: For a sequence of length 10 and embedding dimension .d = 16,  the  
positional encoding for the first position might be 

. p1 = [sin(1), cos(1), sin(1/100001/8), cos(1/100001/8), . . . ]

The encoding for the second position would have slightly different values due to 
the changing argument in the sine and cosine functions, ensuring that each position 
has a unique encoding.
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Learned Positional Encoding 

In learned positional encoding, the positional vectors .pi are treated as parameters 
that are learned during the training process, similar to how the word embeddings 
.ei are learned. Formally, let .P ∈ R

n×d be the matrix of positional encodings, where 
each row.pi corresponds to the positional encoding for position . i : 

. P = [p1,p2, . . . ,pn]�.

During training, the matrix. P is optimized to minimize the model’s loss function, 
along with other model parameters. 

Properties: 
1. Flexibility: Unlike sinusoidal encoding, learned positional encoding does not 

impose any predefined structure on the encodings. The model can learn the optimal 
positional encodings based on the task and dataset. 

2. Task-Specific Adaptation: Since the positional encodings are learned, they can 
adapt to the specific characteristics of the training data, potentially capturing more 
complex positional relationships. 

3. Scalability: While learned encodings are flexible, they require the model to 
learn additional parameters, which can increase the computational and memory 
requirements, especially for long sequences. 

Example: In a machine translation task, the model might learn that certain posi-
tions in the input sequence are more important for aligning with positions in the 
output sequence. The learned positional encodings could reflect this by assigning 
higher weights or more distinct vectors to those positions. 

Remark (Expressiveness of Learned Positional Encoding): Given a sufficiently 
large model and enough training data, learned positional encoding can approximate 
any smooth function of position. Specifically, for any smooth function. f : R → R

d , 
there exists a set of learned positional encodings . P such that 

. pi ≈ f (i),

for all positions . i . 
This highlights the expressiveness and adaptability of learned positional encoding, 

which can theoretically match or exceed the performance of fixed encodings. 

Relative Positional Encoding 

Relative positional encoding encodes the relative position .k = j − i between two 
tokens at positions . i and . j rather than their absolute positions. This approach is 
particularly useful in tasks where the model needs to focus on the relative order of 
tokens rather than their exact positions. Let .rk represent the encoding of the relative
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position . k. The model then incorporates these relative encodings into the attention 
mechanism, modifying the attention score .αi j between tokens .xi and . x j : 

. αi j = q�
i (k j + r j−i ),

where .qi and .k j are the query and key vectors associated with tokens .xi and . x j , 
respectively. 

Properties: 
1. Translation Invariance: Relative positional encoding naturally handles shifts in 

the input sequence, making the model invariant to translations of the input. 
2. Efficiency in Long Sequences: By focusing on relative rather than absolute 

positions, the model can efficiently manage long sequences, as the number of unique 
relative positions is limited by the sequence length. 

3. Simplicity: Relative positional encoding can be simpler to implement in certain 
models, as it does not require a separate positional encoding matrix for each position 
in the sequence. 

Theorem 2.7 (Equivariance of Relative Positional Encoding) Let .rk be the rela-
tive positional encoding for position difference . k. Then, for any shift . s, the relative 
positional encodings satisfy 

. rk+s = rk + rs,

ensuring that the relative positional information is preserved under translations of 
the input sequence. 

Example: In a document where the order of sentences matters more than their 
absolute positions, relative positional encoding allows the model to focus on the 
relationships between sentences rather than their positions within the document. For 
instance, in tasks like summarization or dialog generation, understanding relative 
order can be crucial. 

2.2.3 Properties and Analysis 

The properties of positional encodings significantly influence how a model processes 
and understands sequential data. Through frequency analysis, we can explore how 
different frequencies in sinusoidal encodings affect the model’s ability to capture 
patterns. Additionally, by examining the impact on model performance and inter-
pretability, we gain insights into how positional encodings contribute to the overall 
effectiveness and transparency of transformer models.
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Frequency Analysis 

Sinusoidal positional encodings rely on encoding positions using sine and cosine 
functions with varying frequencies. The choice of these frequencies plays a critical 
role in how well the model can differentiate between positions, especially when 
sequences are long. The encoding for a position. i and dimension. j in a.d-dimensional 
space is given by 

. p(2 j)
i = sin

(
i

100002 j/d

)
, p(2 j+1)

i = cos

(
i

100002 j/d

)
,

where . j ranges from. 0 to .
d
2 − 1. 

The parameter.100002 j/d controls the frequency of the sinusoidal functions. Lower 
dimensions (small . j) correspond to higher frequencies, capturing fine-grained posi-
tional differences, while higher dimensions (large. j) correspond to lower frequencies, 
capturing broader positional relationships. 

We can interpret sinusoidal positional encoding as a Fourier series representation, 
where the position. i is decomposed into a sum of sinusoids with different frequencies. 
The Fourier series is particularly effective for representing periodic signals, which 
aligns with the periodic nature of language and other sequential data. 

Remark (Fourier Representation of Positional Encodings): Let.pi be the posi-
tional encoding for position . i . Then, the encoding can be viewed as a truncated 
Fourier series: 

. pi =
d/2−1∑

k=0

[
ak cos

(
2πki

L

)
+ bk sin

(
2πki

L

)]
,

where .ak and .bk are coefficients that depend on the dimension . j , and .L is the 
length of the sequence. This series captures both high-frequency and low-frequency 
components of the sequence positions. 

Implications: 
1. Resolution of Positional Differences: Lower dimensions, with higher frequen-

cies, allow the model to resolve small positional differences, making them suitable 
for capturing fine-grained word order. Higher dimensions capture broader patterns 
and can identify when tokens are in roughly the same position within the sequence. 

2. Periodicity: The use of sine and cosine functions inherently introduces period-
icity, meaning that the model can capture recurring patterns in the data, such as those 
found in cyclical sequences (e.g., periodic time series data). 

Example: For a sequence length .L = 100 and embedding dimension .d = 16, 
the lower frequency components (corresponding to small . j) would allow the model 
to differentiate between positions 1 and 2, while the higher frequency components 
would differentiate between positions 50 and 100.



2.2 Positional Encoding 131

Impact on Model Performance 

The effectiveness of positional encoding directly influences the model’s performance 
on tasks that require understanding the order and structure of input data. For example, 
in tasks such as machine translation or text summarization, capturing the correct 
sequence of tokens is essential for generating accurate outputs. 

Empirically, transformers using sinusoidal positional encodings have demon-
strated strong performance across a range of NLP tasks. However, the choice of 
positional encoding type—sinusoidal versus learned—can have different impacts 
depending on the nature of the task and the characteristics of the data. 

The impact of positional encoding on model performance can be assessed using 
standard NLP metrics such as BLEU score for translation, ROUGE score for sum-
marization, and accuracy for classification tasks. These metrics reflect how well the 
model preserves and interprets the sequential information in the data. 

Remark (Generalization Bounds with Positional Encoding): Let .HPE denote 
the hypothesis class of transformers with positional encoding. The generalization 
error .R(h) of a model .h ∈ HPE is bounded by 

. R(h) ≤ R̂n(h) + O
(√

Complexity(HPE)

n

)
,

where.R̂n(h) is the empirical risk, and.Complexity(HPE) is a measure of the model’s 
complexity, including the influence of positional encoding. This bound shows that 
positional encoding contributes to the model’s ability to generalize by influencing 
the complexity of the hypothesis space. 

Example: In a translation task, a model with well-designed positional encodings 
might exhibit a lower BLEU score when these encodings are removed or poorly 
tuned, indicating the critical role of positional information in maintaining translation 
quality. 

Interpretability of Positional Encodings 

The interpretability of positional encodings stems from their mathematical structure. 
Sinusoidal encodings, due to their periodic nature, are particularly interpretable, as 
each dimension of the encoding has a clear geometric meaning related to frequency 
components of the position. 

Positional encodings can be visualized as heatmaps, where each row corresponds 
to a position . i and each column to a dimension . j . These visualizations often reveal 
regular patterns that reflect how the model perceives positional information.
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The positional encodings .pi for different positions . i and . j are nearly orthogonal 
for large positional differences, which ensures that the model can distinguish between 
distant positions effectively. Formally, 

. pi · p j ≈ 0 for |i − j | 
 0.

This orthogonality is a key factor in making positional encodings interpretable, 
as it ensures that the model can separate and process different positions distinctly. 

Implications for model interpretability: 
1. Traceability: The clear mathematical structure of sinusoidal encodings allows 

researchers to trace how positional information flows through the model, aiding in 
the interpretation of model outputs. 

2. Insights into model behavior: By analyzing the patterns in the positional encod-
ings, one can gain insights into how the model attends to different parts of the input 
sequence. This can be particularly useful in tasks like attention visualization, where 
understanding the positional contributions to the attention mechanism is crucial. 

Example: In tasks like document classification, where the order of sentences 
can influence the final prediction, interpretability of positional encodings can help 
identify whether the model is correctly attending to the beginning, middle, or end of 
the document, providing transparency in the decision-making process. 

2.2.4 Applications and Variations 

Positional encoding is adapted to different types of data beyond textual sequences. 
Each adaptation retains the core principles of encoding positional or structural infor-
mation while modifying the encoding mechanism to suit the specific data type. Below, 
we delve into how positional encoding is applied in vision transformers, temporal 
sequences, and hierarchical data structures. 

Positional Encoding in Vision Transformers 

Vision Transformers (ViTs) apply transformer architectures to image data, which 
differs significantly from text due to its two-dimensional nature. Unlike sequences 
of words, images are composed of pixels arranged in a grid. To effectively use 
transformers in vision tasks, it is necessary to encode the spatial positions of image 
patches, preserving the spatial relationships inherent in images. 

In vision transformers, an image is divided into patches, and each patch is treated 
as a token in a sequence. Let . I be an image of size .H × W (height .H and width 
. W ), divided into.N patches, where each patch is of size.P × P . The sequence length 
is .N = HW

P2 , and each patch is flattened into a vector .pi ∈ R
P2·C , where .C is the 

number of channels (e.g., RGB).
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To incorporate spatial information, positional encodings .eposi are added to the 
patch embeddings . pi : 

. zi = pi + eposi ,

where .zi is the input to the transformer. The positional encodings .eposi must capture 
both the row and column positions of the patches in the original image. 

2D Positional Encoding: The positional encoding can be extended to two 
dimensions, where separate encoding vectors are used for the row and column indices: 

. eposi = erow(i) + ecol(i),

where .row(i) and .col(i) are the row and column indices of the .i-th patch. Each 
encoding vector.erow and.ecol can be sinusoidal, learned, or based on other techniques 
suitable for encoding two-dimensional positions. 

Let.erow(i) and.ecol(i) be the positional encodings for the row and column indices of 
the.i-th patch in a grid. The resulting 2D positional encoding.eposi uniquely identifies 
each position within the grid, ensuring that 

. eposi �= eposj for i �= j.

This ensures that each patch retains its unique position within the image, enabling 
the model to learn spatial relationships effectively. 

Example: For a .224 × 224 image with.16 × 16 patches, there are. 14 × 14 = 196
patches. Each patch position is encoded using the 2D positional encoding, allowing 
the vision transformer to process the image as a sequence of patches while preserving 
the spatial structure. 

Temporal Positional Encoding in Time Series 

Time series data, unlike static images or text, has a continuous and often irregular 
temporal dimension. For tasks such as forecasting, anomaly detection, or temporal 
classification, it is crucial to encode temporal information that reflects the progression 
and spacing of events in time. 

Given a time series .{x1, x2, . . . , xT }, where .xt represents the value at time . t , 
temporal positional encoding must reflect both the sequence order and the potentially 
varying time intervals between observations. 

Sinusoidal Temporal Encoding: A straightforward extension of sinusoidal posi-
tional encoding can be applied to time series by treating each time step as a 
position: 

.p(2 j)
t = sin

(
t

100002 j/d

)
, p(2 j+1)

t = cos

(
t

100002 j/d

)
,
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where . t is the time index and . j indexes the dimension. This encoding assumes 
uniform time intervals. 

Continuous Temporal Encoding: For time series with non-uniform intervals, the 
encoding can be adjusted by directly encoding the actual time. ti of each observation: 

. p(2 j)
ti = sin

(
ti

τ 2 j/d

)
, p(2 j+1)

ti = cos

(
ti

τ 2 j/d

)
,

where . τ is a scaling factor chosen based on the range of time values . ti . This allows 
the encoding to capture non-uniform temporal intervals. 

For a time series with non-uniform intervals, let. ti be the time of the.i-th observa-
tion. The continuous temporal encoding .pti provides a representation that preserves 
the temporal order and spacing of observations. For any two observations at times. ti
and . t j : 

. ‖pti − pt j ‖ ∝ |ti − t j |,

ensuring that the temporal distance between observations is reflected in their 
positional encodings. 

Example: Consider a time series of daily stock prices with missing weekends. 
A continuous temporal encoding would assign different positional vectors to Friday 
and Monday, reflecting the 2-day gap, unlike a simple index-based encoding. 

Hierarchical Positional Encoding 

In many datasets, information is organized hierarchically, such as paragraphs within 
a document, sections within a book, or folders within a filesystem. Hierarchi-
cal positional encoding provides a way to encode multi-level structures, enabling 
transformers to process data at multiple levels of granularity. 

Let the data be organized into a hierarchy with. L levels, where each level. 
 contains 
.n
 units. For example, in a document, . L could represent sections, paragraphs, and 
sentences. Each unit at level. 
 is encoded with a positional vector.e
,i , where. i indexes 
the units at that level. 

Hierarchical Encoding Structure: The overall positional encoding for a unit at the 
deepest level (e.g., a word) is the sum of the positional encodings from all levels: 

. pword =
L∑


=1

e
,i
 ,

where . i
 indexes the position within the .
-th level. 
Properties: 
1. Multi-Level Information: Hierarchical encoding captures information at mul-

tiple levels, allowing the model to distinguish not only between positions within a 
sequence but also between different hierarchical contexts.
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2. Flexibility: The encoding scheme can be adapted to different hierarchical struc-
tures, whether they are balanced (e.g., binary trees) or unbalanced (e.g., document 
structures). 

Remark (Uniqueness of Hierarchical Positional Encoding): For a hierarchical 
structure with .L levels, let .e
,i
 be the positional encoding at level . 
.  The  sum  of  
these encodings uniquely identifies each position within the hierarchy, ensuring that 

. pi �= p j for any i �= j at the same or different levels.

This guarantees that each unit in the hierarchy is uniquely represented, preserving 
the structure’s integrity. 

Example: In a book, sentences within the same paragraph might have similar 
lower-level positional encodings, but their higher-level encodings will differ based 
on their section or chapter, allowing the model to understand both the local and global 
contexts. 

2.3 Integration of Word Embeddings and Positional 
Encoding 

The integration of word embeddings and positional encoding is a critical aspect of 
transformer architectures. This integration enables transformers to effectively process 
sequences by embedding both the content and the positional information of tokens, 
allowing the model to capture both the semantic and structural aspects of the input 
data. In this section, we explore how word embeddings and positional encoding are 
combined within the transformer framework, focusing on the embedding layer and 
the positional encoding layer. 

2.3.1 Combining Embeddings and Positional Encoding 
in Transformers 

In transformer models, each input token is represented by a combination of its word 
embedding and its positional encoding. This combined representation allows the 
model to retain information about both the identity and the order of tokens within 
the sequence. The mathematical formulation and integration of these components 
are essential to the success of the transformer architecture.
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Embedding Layer in Transformers 

The embedding layer in a transformer maps each token in the input sequence to a high-
dimensional vector space, where similar tokens have similar representations. Given 
a vocabulary .V with .|V| tokens, the embedding layer is defined by an embedding 
matrix .E ∈ R

|V|×d , where . d is the dimensionality of the embedding space. For a 
sequence of tokens .{x1, x2, . . . , xn}, the embedding layer produces a sequence of 
embeddings .{e1, e2, . . . , en}, where 

. ei = E[xi ],

and .E[xi ] denotes the embedding vector corresponding to token . xi . 
Properties of the Embedding Layer: 
1. Semantic Representation: The embedding layer captures semantic similarities 

between tokens, such that tokens with similar meanings are mapped to nearby points 
in the embedding space. 

2. Learnability: The embedding matrix . E is learned during the training process, 
allowing the model to adapt the embeddings to the specific task and dataset. 

3. Dimensionality: The choice of the embedding dimensionality . d affects the 
expressiveness and capacity of the model. Higher dimensions can capture more 
nuanced semantic relationships but also increase the model’s complexity. 

Remark (Universal Approximation with Embeddings): Given a sufficiently 
large embedding dimension. d, the embedding layer can approximate any continuous 
mapping from tokens to a high-dimensional space. Formally, for any continuous 
function . f : V → R

d , there exists an embedding matrix . E such that 

. E[xi ] ≈ f (xi ),

for all tokens .xi ∈ V . This theorem highlights the ability of the embedding layer to 
capture complex semantic relationships within the vocabulary. 

Example: Consider the words “cat” and “dog.” In a well-trained embedding space, 
.E[cat] and .E[dog] will be close to each other, reflecting the semantic similarity 
between these tokens. 

Positional Encoding Layer in Transformers 

The positional encoding layer introduces positional information into the sequence 
of embeddings produced by the embedding layer. For a sequence of length . n,  the  
positional encoding layer generates a sequence of positional vectors.{p1,p2, . . . ,pn}, 
where each positional vector .pi corresponds to the position of the .i-th token. The 
final input to the transformer model is obtained by adding the positional encoding to 
the embedding: 

.zi = ei + pi ,
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where. zi is the combined representation for the.i-th token, capturing both its semantic 
meaning (through . ei ) and its position within the sequence (through . pi ). 

Properties of the Positional Encoding Layer: 
1. Order Sensitivity: The addition of positional encodings ensures that the model 

is sensitive to the order of tokens, allowing it to differentiate between sequences with 
the same tokens in different orders. 

2. Non-Interference: The positional encoding is typically designed so that it does 
not dominate the embedding. For example, in sinusoidal encoding, the encoding val-
ues are scaled to be of similar magnitude to the embeddings, ensuring that positional 
and semantic information are balanced. 

3. Fixed versus Learned: The positional encoding can be either fixed (e.g., sinu-
soidal) or learned. Fixed encodings are predefined and do not change during training, 
while learned encodings are optimized along with other model parameters. 

Remark (Injectivity of Combined Representation): Let .zi = ei + pi be the 
combined representation of a token at position . i . The injectivity of the combined 
representation function ensures that no two different positions . i and . j produce the 
same combined vector: 

. zi �= z j for i �= j.

This guarantees that the model can uniquely identify each token based on both its 
content and position. 

Example: For the sentence “The quick brown fox,” the embeddings. {e1, e2, e3, e4}
might represent the words “The,” “quick,” “brown,” and “fox.” The positional encod-
ings.{p1,p2,p3,p4} ensure that the sequence “The quick brown fox” is distinguished 
from “fox brown quick The.” 

The integration of word embeddings and positional encodings is crucial for the 
transformer’s ability to process sequential data. Without positional encoding, the 
model would lose the ability to understand the order of tokens, reducing its effective-
ness in tasks that rely on sequence structure, such as translation, text summarization, 
and language modeling. 

Example: Consider the embeddings .ei for a sequence of four tokens, along 
with their corresponding positional encodings . pi . The final input sequence to the 
transformer could be represented as 

. 

z1 = e1 + p1,

z2 = e2 + p2,

z3 = e3 + p3,

z4 = e4 + p4.

Each. zi is then processed by the transformer layers, which can now leverage both 
the content and positional information to make predictions.
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2.3.2 Impact on Attention Mechanisms 

The attention mechanism in transformers allows the model to weigh the importance 
of different tokens in a sequence relative to each other. Without positional encoding, 
the model would treat all tokens as independent and identically distributed, losing 
the crucial information about their order in the sequence. By integrating positional 
information, the attention mechanism can differentiate between tokens based on their 
positions, thereby improving the model’s ability to capture the underlying structure 
of the data. 

Enhancing Self-Attention with Positional Information 

Self-attention is a mechanism that computes a weighted sum of all tokens in a 
sequence, where the weights (attention scores) are determined by the relevance of 
each token to the others. For a sequence of tokens.{x1, x2, . . . , xn} with correspond-
ing combined embeddings .{z1, z2, . . . , zn}, the self-attention mechanism computes 
the output .yi for each token .xi as follows: 

. yi =
n∑

j=1

αi jz j ,

where .αi j is the attention score between tokens .xi and . x j . The attention score is 
computed using the scaled dot-product attention: 

. αi j = exp
(
q�
i k j

)
∑n

k=1 exp
(
q�
i kk

) ,

where .qi = Wqzi and .k j = Wkz j are the query and key vectors for tokens .xi and 
. x j , respectively, and .Wq and .Wk are learned weight matrices. 

Positional encoding .pi influences the attention mechanism by modifying the 
embeddings .zi = ei + pi , where .ei is the word embedding and .pi is the positional 
encoding. This addition ensures that the attention mechanism considers both the 
content of the tokens and their positions in the sequence. 

The positional encoding affects the dot product .q�
i k j by introducing terms that 

depend on the positions . i and . j . This alters the attention scores .αi j , making them 
sensitive to the relative positions of the tokens. For example, if .x j is farther from. xi
in the sequence, the positional term may decrease the attention score, reducing the 
influence of distant tokens on the current token’s representation. 

Remark (Positional Sensitivity in Self-Attention): Let .pi and .p j be the posi-
tional encodings for tokens .xi and . x j . The attention score .αi j in self-attention 
is influenced by the difference .pi − p j . Formally, the attention score can be 
expressed as
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. αi j = exp
(
(ei + pi )� W�

q Wk
(
e j + p j

))
∑n

k=1 exp
(
(ei + pi )� W�

q Wk (ek + pk)
) ,

which shows that the attention mechanism considers not only the semantic content 
.e�
i W

�
q Wke j but also the positional difference .p�

i W
�
q Wkp j . 

Example: Consider a sentence “The cat sat on the mat.” Without positional encod-
ing, the model might struggle to differentiate between similar sentences like “The 
mat sat on the cat.” By incorporating positional encoding, the attention mechanism 
can assign higher weights to tokens that follow the expected word order, reducing 
the likelihood of such confusion. 

Role in Multi-head Attention 

Multi-head attention extends the self-attention mechanism by allowing the model 
to focus on different parts of the sequence simultaneously. Instead of computing a 
single set of attention scores, multi-head attention computes multiple sets of scores, 
each corresponding to a different “head” in the model. Given . h attention heads, the 
multi-head attention output for a token .xi is computed as 

. ymulti
i = Wo

[
y(1)
i ‖ y(2)

i ‖ . . . ‖ y(h)
i

]
,

where .y(k)
i is the output of the .k-th attention head, . ‖ denotes concatenation, and . Wo

is a learned output matrix. 
Each attention head can capture different aspects of the token relationships, and 

positional encoding ensures that each head remains sensitive to the sequence order. 
For example, one head might focus on short-range dependencies, while another might 
capture long-range dependencies, with positional encoding providing the necessary 
context. 

The incorporation of positional encoding into multi-head attention affects the 
calculation of attention scores for each head: 

. α
(k)
i j =

exp
((
W(k)

q zi
)� (

W(k)
k z j

))

∑n
l=1 exp

((
W(k)

q zi
)� (

W(k)
k zl

)) ,

where .W(k)
q and .W(k)

k are the query and key weight matrices for the .k-th head. The 
positional encodings .pi and .p j influence these scores, allowing each head to focus 
on different positional aspects of the sequence. 

Let .α(k)
i j be the attention score for the .k-th head in a multi-head attention mech-

anism. The positional encoding .pi ensures that each head can focus on different
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positional relationships, leading to diverse attention patterns. Formally, for different 
heads . k and . l: 

. α
(k)
i j �= α

(l)
i j ifW(k)

q �= W(l)
q or W(k)

k �= W(l)
k .

This diversity allows the model to capture a wide range of positional and semantic 
relationships within the sequence. 

Example: In a translation task, one attention head might focus on the subject 
of a sentence, while another might focus on the verb. Positional encoding ensures 
that each head understands the roles of tokens based on their positions, allowing the 
model to generate more accurate translations. 

2.4 Mathematical Analysis and Performance Metrics 

The evaluation of embedding quality is critical to understanding how well word 
embeddings and positional encodings capture the underlying structure of the data. 
By employing mathematical analysis and well-defined performance metrics, we 
can assess the effectiveness of these embeddings in various tasks. This section 
explores both intrinsic and extrinsic evaluation methods, providing a comprehensive 
framework for evaluating embedding quality. 

2.4.1 Evaluation of Embedding Quality 

Word embeddings and positional encodings are fundamental to the performance 
of models in NLP and other domains. To assess the quality of these embeddings, 
we employ two main categories of evaluation: intrinsic methods, which assess the 
embeddings independently of specific tasks, and extrinsic methods, which evaluate 
embeddings based on their performance in downstream tasks. 

Intrinsic Evaluation Methods 

Intrinsic evaluation methods focus on analyzing the properties of embeddings without 
reference to any specific application. These methods are based on the assumption 
that good embeddings should capture meaningful relationships between words or 
other tokens in a way that reflects semantic or syntactic properties. 

One of the most common intrinsic evaluation methods involves measuring the 
similarity between word pairs using cosine similarity or Euclidean distance. Given 
two word vectors .v1 and . v2, the cosine similarity .cos(v1, v2) is defined as 

.cos(v1, v2) = v1 · v2
‖v1‖‖v2‖ ,
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where .‖v1‖ and .‖v2‖ are the Euclidean norms of .v1 and . v2, respectively. Higher 
cosine similarity indicates greater semantic similarity. 

For analogy tasks, the evaluation is based on how well the embeddings solve word 
analogy problems of the form “A is to B as C is to D.” The task is to find a word . D
such that 

. vB − vA ≈ vD − vC .

The quality of the embeddings is assessed by the proportion of correct answers. 
For any word vectors.vA,.vB ,.vC , and.vD that satisfy a semantic analogy, the vector 

offset property holds 
. vB − vA ≈ vD − vC .

This property allows us to assess the semantic consistency of embeddings through 
analogy tasks. 

Another intrinsic method involves clustering word embeddings and measuring 
the coherence of the clusters. Words that are semantically similar should be grouped 
together in the embedding space. Clustering metrics such as intra-cluster variance 
and inter-cluster separation are used to quantify the quality of these clusters. 

Given a clustering .C = {C1,C2, . . . ,Ck} of word vectors, the intra-cluster 
variance .Vintra is defined as 

. Vintra = 1

k

k∑

i=1

1

|Ci |
∑

v j∈Ci

‖v j − ci‖2,

where . ci is the centroid of cluster . Ci . 
Example: If we cluster word embeddings for “dog,” “cat,” “wolf,” and “car,” we 

expect “dog,” “cat,” and “wolf” to form one cluster, while “car” forms another. Low 
intra-cluster variance and high inter-cluster separation indicate that the embeddings 
correctly capture the semantic distinctions. 

Extrinsic Evaluation Methods 

Extrinsic evaluation methods assess the quality of embeddings based on their perfor-
mance in downstream tasks. The assumption is that better embeddings will lead to 
improved performance in tasks such as text classification, named entity recognition 
(NER), machine translation, and question answering. 

For each downstream task, the embeddings are used as input features for a model, 
and the performance of the model is measured using task-specific metrics. For exam-
ple, in text classification, accuracy, precision, recall, and F1-score are commonly used 
metrics. For NER, the model’s ability to correctly identify and classify named entities 
is evaluated.
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Let . T be a task, and let .MT (E) denote the performance metric for task . T when 
using embeddings. E. The goal of extrinsic evaluation is to maximize.MT (E) across 
a set of tasks: 

. E∗ = argmax
E

∑

T

MT (E).

Transfer learning is another important aspect of extrinsic evaluation. In this sce-
nario, embeddings are pre-trained on a large corpus and then fine-tuned on a specific 
downstream task. The quality of the embeddings is assessed by how well they transfer 
to the new task. 

Let .Lpre and .Lfinetune be the loss functions during pre-training and fine-tuning, 
respectively. Pre-trained embeddings . E generalize well to a downstream task if the 
following holds: 

. Lfinetune(E) ≤ Lfinetune(Erand) + ε,

where .Erand are randomly initialized embeddings and . ε is a small positive constant. 
This indicates that pre-trained embeddings lead to better generalization compared to 
random initialization. 

Example: In a sentiment analysis task, pre-trained embeddings might be fine-tuned 
on a labeled dataset to classify reviews as positive or negative. The performance of the 
model, as measured by accuracy or F1-score, reflects the quality of the embeddings. 

Intrinsic and extrinsic methods serve complementary roles in the evaluation of 
embeddings. Intrinsic methods offer insight into the geometric properties of the 
embedding space, while extrinsic methods provide evidence of how well these 
embeddings perform in practical applications. Together, these methods form a com-
prehensive evaluation framework that ensures embeddings are both theoretically 
sound and practically effective. 

2.4.2 Impact of Embeddings on Downstream Tasks 

Embeddings serve as the foundational input to models in many NLP tasks. The 
quality of these embeddings directly influences the performance of models in tasks 
such as sentiment analysis, machine translation, and named entity recognition. The 
mathematical relationship between the quality of embeddings and downstream task 
performance can be understood through the concept of representation power. 

Let .E ∈ R
n×d represent the embedding matrix, where . n is the vocabulary size 

and. d is the embedding dimension. For a given downstream task. T , the performance 
.MT (E) is a function of the embeddings: 

.MT (E) = 1

|DT |
∑

(x,y)∈DT


( f (x;E), y),
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where.DT is the dataset for task. T ,. f (x;E) is the model’s prediction based on input. x
using embeddings. E,. y is the true label, and. 
 is the loss function (e.g., cross-entropy 
for classification tasks). 

The effectiveness of embeddings .E can be assessed by their ability to linearly 
separate classes or capture relevant features for the task. This is often analyzed using 
the notion of linear separability. Let.w ∈ R

d be a weight vector for a linear classifier. 
The classification decision is given by 

. ŷ = sign(w�E[x]).

The embeddings. E are considered effective if the classes. y and. ŷ are well separated 
in the embedding space. The quality of this separation can be quantified using a 
margin . γ : 

. γ = min
(x,y)∈DT

y · w�E[x]
‖w‖ .

A larger margin .γ indicates better separation and, consequently, higher task 
performance. 

Example: In sentiment analysis, where the task is to classify text as positive or 
negative, the embeddings must capture sentiment-related features such that positive 
and negative texts are easily separable by a linear classifier. If the embeddings are 
well structured, the performance metric, such as accuracy or F1-score, will be high. 

Theorem 2.8 (Performance Bound with Embeddings) Let.E∗ be the optimal embed-
ding matrix for a task . T . The performance .MT (E) of any embedding . E is bounded 
by 

. MT (E) ≤ MT (E∗) + ε,

where . ε depends on the quality of .E relative to .E∗. This bound emphasizes that 
embeddings closer to the optimal .E∗ yield better task performance. 

2.4.3 Performance Metrics for Positional Encoding 

The effectiveness of positional encoding can be assessed through task-specific 
performance metrics and analyses of generalization and robustness. 

Task-Specific Performance Metrics 

Positional encoding is evaluated based on how well it enables a model to understand 
and process sequences. The effectiveness of positional encoding can be measured by 
comparing model performance on tasks that rely heavily on sequential information.
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For a given task. T with performance metric .MT , the evaluation focuses on how the 
presence of positional encoding . P improves performance: 

. �MT = MT (E + P) − MT (E),

where.MT (E + P) represents the performance with positional encoding and. MT (E)

without it. 
Tasks such as machine translation, text summarization, and language modeling 

are highly dependent on the correct interpretation of sequence order. In these tasks, 
positional encoding helps the model maintain context and coherence in the generated 
outputs. The evaluation can be performed using metrics like BLEU for translation, 
ROUGE for summarization, or perplexity for language modeling. 

Example: In a machine translation task, the BLEU score measures the overlap 
between machine-generated translations and reference translations. Positional encod-
ing is expected to improve the BLEU score by ensuring that the model correctly 
captures the order of words and phrases, which is crucial for producing coherent 
translations. 

Let. T be a sequence-dependent task with performance metric.MT . The inclusion 
of positional encoding . P improves the performance bound: 

. MT (E + P) ≥ MT (E) + γ,

where .γ is a positive constant representing the benefit of positional encoding in 
maintaining sequence information. 

Generalization and Robustness Analysis 

The generalization capability of a model refers to its performance on unseen data, 
while robustness indicates its ability to handle perturbations or variations in the input. 
Positional encoding should enhance both aspects by providing the model with a more 
structured understanding of sequences. 

Let .Ltrain(E,P) and .Ltest(E,P) represent the training and test loss functions, 
respectively. The generalization gap .�L is defined as 

. �L = Ltest(E,P) − Ltrain(E,P).

A smaller generalization gap indicates better generalization. To analyze robust-
ness, we introduce perturbations . δ to the input sequence . x , and measure the change 
in model performance: 

.R(E,P) = max
δ

MT ( f (x + δ;E + P), y) − MT ( f (x;E + P), y).
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A lower value of .R(E,P) indicates higher robustness. For any sequence-
dependent task . T , the inclusion of positional encoding . P reduces the generalization 
gap: 

. �L(E + P) ≤ �L(E),

indicating that positional encoding helps the model generalize better by providing a 
clearer structure to the sequence data. 

Example: In a text summarization task, a model trained with positional encoding 
is likely to produce more coherent summaries on unseen documents, demonstrating 
better generalization. Additionally, the model’s robustness can be tested by introduc-
ing noise or slight reordering of input sentences, and observing how well the model 
maintains the integrity of the summary. 

2.5 Data Handling and Preprocessing 

Data handling and preprocessing are critical steps in preparing data for machine 
learning models, particularly for NLP tasks. Proper preprocessing ensures that the 
data is in a suitable format for training and that the model can learn effectively 
from the input data. This section focuses on two key aspects of data preprocessing: 
normalization and standardization of data, and text data tokenization, with a detailed 
exploration of Byte-Pair Encoding (BPE) and WordPiece Tokenization. In the context 
of NLP, data preprocessing involves transforming raw text data into a structured 
format that models can effectively process. This typically includes steps such as 
normalization, standardization, and tokenization. Each of these steps plays a crucial 
role in ensuring that the data is consistent, reducing variability that is not relevant 
to the task, and breaking down the text into manageable pieces that the model can 
interpret. 

2.5.1 Data Normalization and Standardization 

Data normalization and standardization are techniques used to adjust the scale of 
features in a dataset, ensuring that they contribute equally to the model’s learning 
process. This is particularly important in NLP, where different features (e.g., word 
frequencies, embedding values) may have different scales. 

Normalization typically rescales the data to a fixed range, usually [0, 1] or [–1, 
1]. For a feature . x in the dataset, normalization is mathematically defined as 

.x ′ = x − min(x)

max(x) − min(x)
,
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where.min(x) and.max(x) are the minimum and maximum values of. x in the dataset. 
Normalization ensures that all features are on the same scale, which can prevent 
features with larger ranges from dominating the learning process. 

Standardization transforms the data to have a mean of 0 and a standard deviation 
of 1. For a feature . x , the standardized value .x ′ is calculated as 

. x ′ = x − μx

σx
,

where .μx is the mean of . x , and .σx is the standard deviation of . x . Standardization is 
particularly useful when the data follows a normal distribution, as it maintains the 
relative relationships between data points while adjusting for scale. 

Let .X be a matrix of features where each column represents a feature vector . x . 
The standardized data matrix .X′ is given by 

. X′ = X − μX

σX
,

where .μX and.σX are the mean and standard deviation vectors of . X. The covariance 
matrix of the standardized data .X′ is the correlation matrix, which has ones on the 
diagonal and values between –1 and 1 off-diagonal, reflecting the linear relationships 
between features. 

Example: In an NLP task, consider a feature representing word frequency in 
a document. If the word frequencies vary greatly, normalization ensures that all 
words contribute proportionally to the model, rather than allowing frequent words 
to dominate due to their higher counts. 

2.5.2 Text Data Tokenization 

Tokenization is the process of converting raw text into smaller units, called tokens, 
which can be words, subwords, or characters. In NLP, tokenization is a crucial step 
that allows models to handle text data by breaking it down into these manageable 
units. There are various methods for tokenization, each with its advantages and 
limitations. In this section, we will explore two widely used tokenization methods: 
Byte-Pair Encoding (BPE) and WordPiece Tokenization. 

Byte-Pair Encoding (BPE) 

Byte-Pair Encoding (BPE) is a subword tokenization method that iteratively merges 
the most frequent pairs of characters or character sequences in the text. The goal is to 
create a vocabulary that includes both characters and common subwords, reducing 
the number of unknown tokens while keeping the vocabulary size manageable.
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Algorithm: 
1. Initialization: Start with a vocabulary that includes all individual characters in 

the text. 
2. Pair Merging: Identify the most frequent pair of adjacent tokens (characters or 

subwords) in the text and merge them into a new token. 
3. Vocabulary Update: Add the new token to the vocabulary and replace all 

instances of the merged pair in the text with the new token. 
4. Iteration: Repeat the pair merging and vocabulary update steps until the desired 

vocabulary size is reached. 
Let. V be the initial vocabulary of characters, and.T = {t1, t2, . . . , tn} represent the 

text sequence. At each iteration, identify the most frequent pair .(ti , ti+1) and merge 
it into a new token .ti,i+1: 

. V ← V ∪ {ti,i+1},

. T ← T − {ti , ti+1} + {ti,i+1}.

The process continues until the vocabulary . V reaches a predefined size. 
BPE effectively compresses the text by reducing the average length of tokens. Let 

.L(T ) be the average token length in text . T before applying BPE, and .L ′(T ) be the 
average length after applying BPE. Then 

. L ′(T ) ≤ L(T ),

indicating that BPE reduces the average token length, leading to more compact text 
representation while maintaining the ability to reconstruct the original text. 

Example: Consider the text “banana bandana.” Initially, the vocabulary consists 
of individual characters b, a, n, d. After the first iteration, the most frequent pair “an” 
is merged into a new token “an.” The updated text and vocabulary reflect this change, 
gradually building more complex subwords. 

WordPiece Tokenization 

WordPiece Tokenization ([ 8]), similar to BPE, is a subword tokenization method that 
builds a vocabulary of subwords to handle rare or unseen words. It was originally 
developed for models like BERT and has become a standard in many transformer-
based architectures. 

Algorithm: 
1. Initialization: Start with a vocabulary that includes all individual characters and 

some common words. 
2. Subword Splitting: Split each word in the text into the longest possible subwords 

that are in the current vocabulary.
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3. Vocabulary Update: For each word, identify potential subword splits and calcu-
late their likelihood based on the current vocabulary. Add the most likely subwords 
to the vocabulary. 

4. Iteration: Continue splitting words and updating the vocabulary until the 
vocabulary reaches the desired size. 

Let . w be a word to tokenize, and. V be the current vocabulary. WordPiece aims to 
split .w into subwords .{s1, s2, . . . , sk} such that 

. w = s1 ◦ s2 ◦ · · · ◦ sk,

where . ◦ denotes concatenation. The likelihood of a subword split .{s1, s2, . . . , sk} is 
calculated as 

. P(w) =
k∏

i=1

P(si ),

where .P(si ) is the probability of subword . si in the current vocabulary. The goal is 
to maximize this likelihood while keeping the vocabulary size manageable. 

Let .S(w) = {s1, s2, . . . , sk} be the optimal subword split for word .w that 
maximizes the likelihood .P(w). Then 

. S(w) = argmax
S

k∏

i=1

P(si ),

where . S is the set of all possible subword splits of . w. This theorem ensures that the 
selected subword split is the most likely given the current vocabulary, contributing 
to more accurate tokenization. 

Example: For the word “unhappiness,” WordPiece might tokenize it into subwords 
“un,” “##happi,” and “##ness,” where “##” indicates that the subword is not a stan-
dalone word. This tokenization captures the morphemes and meaningful subword 
units, aiding in better understanding by the model. 

2.5.3 Handling Missing Data 

In any data-driven modeling task, missing data and the need for data augmentation 
are common challenges. Proper handling of missing data is crucial for maintaining 
the integrity and performance of models, while data augmentation techniques are 
essential for enhancing the robustness and generalization of models. This section 
explores imputation techniques for handling missing data and various data augmen-
tation methods for both text and image data. Missing data is a pervasive issue in real-
world datasets, and how it is handled can significantly affect model performance. 
The presence of missing data can introduce bias, reduce the representativeness of the
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sample, and lead to inaccurate or invalid conclusions. To address this, several impu-
tation techniques are employed to estimate the missing values based on the available 
data. 

Imputation Techniques 

Imputation techniques aim to replace missing data points with plausible values to 
create a complete dataset that can be used for analysis. The choice of imputation 
method depends on the nature of the data and the assumptions that can be reasonably 
made about the missingness mechanism. 

Mean/Median Imputation: One of the simplest imputation techniques is to replace 
missing values with the mean or median of the observed values in the same feature. 
For a feature .X with missing values, the imputed value .x̂mean is given by 

. x̂mean = 1

n

n∑

i=1

xi ,

where .xi are the observed values and . n is the number of observed values. Median 
imputation replaces missing values with the median .x̂median of the observed values. 

Let .X be a random variable with missing values imputed using the mean .x̂mean. 
The bias introduced by mean imputation in the estimation of the population mean 
.μX is given by 

. Bias(μ̂X ) = nmiss

n

(
μX − x̂mean

)
,

where.nmiss is the number of missing values and. n is the total number of observations. 
This bias tends to zero as the proportion of missing data decreases. 

K-Nearest Neighbors (K-NN) Imputation: K-NN imputation estimates the miss-
ing values based on the values of the k-nearest neighbors in the feature space. For a 
missing value .xi in feature . X , the imputed value .x̂i is given by 

. x̂i = 1

k

∑

j∈N (i)

x j ,

where .N (i) represents the indices of the k-nearest neighbors to .xi in the feature 
space. This method assumes that similar instances have similar values, making it 
suitable for datasets where the features are correlated. 

Multiple Imputation: Multiple imputation involves creating several different plau-
sible imputed datasets and combining the results obtained from each to account for 
the uncertainty of the imputed values. Let .D1, D2, . . . , Dm be the imputed datasets. 
The final estimate. θ̂ of a parameter . θ is obtained by averaging the estimates .θ̂ j from 
each imputed dataset:
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. θ̂ = 1

m

m∑

j=1

θ̂ j ,

where .θ̂ j is the estimate from the j-th imputed dataset. 
Under the assumption of missing at random (MAR), multiple imputation provides 

consistent estimates of population parameters. Formally, if the data is MAR and the 
imputation model is correctly specified, then 

. lim
n→∞ θ̂ = θ,

where . θ is the true population parameter. 
Example: In a medical dataset where some patients’ blood pressure readings are 

missing, K-NN imputation might be used to estimate the missing values based on 
the readings of similar patients, while multiple imputation could provide a range of 
possible values to reflect the uncertainty in the imputation. 

2.5.4 Data Augmentation 

Data augmentation is a technique used to increase the diversity and size of a dataset 
by generating new data points from the existing data. This is particularly important 
in machine learning, where large and varied datasets are needed to train models that 
generalize well to new, unseen data. Different techniques are used for augmenting 
text and image data, each designed to preserve the underlying structure of the data 
while introducing variation. 

Techniques for Text Data 

Text data augmentation involves generating new sentences or phrases that retain 
the original meaning while introducing variability in the form of synonyms, 
paraphrasing, or sentence structure modifications. 

Synonym Replacement: Synonym replacement involves substituting words in 
a sentence with their synonyms. Given a sentence .S = {w1, w2, . . . , wn},  a  ne  w  
sentence .S′ is generated by replacing a word .wi with a synonym .w′

i drawn from a 
thesaurus or word embedding space: 

. S′ = {w1, . . . , wi−1, w
′
i , wi+1, . . . , wn}.

This method assumes that the meaning of the sentence remains unchanged when 
synonyms are substituted.
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Back-Translation: Back-translation generates augmented data by translating a 
sentence into another language and then translating it back into the original lan-
guage. Let.T1 and.T2 be translation functions for two languages. A sentence. S is first 
translated into a different language .L2 and then back to the original language .L1: 

. S′ = T1(T2(S)).

The back-translated sentence.S′ often differs in structure and word choice from the 
original sentence . S, providing a diverse augmentation while preserving the original 
meaning. 

Let .S be an original sentence and .S′ its back-translated version. The lexical 
diversity .D(S, S′) introduced by back-translation can be quantified as 

. D(S, S′) =
∑n

i=1 1(wi �= w′
i )

n
,

where .1(wi �= w′
i ) is an indicator function that equals 1 if the word .wi in . S differs 

from the corresponding word .w′
i in . S

′, and . n is the length of the sentence. This 
diversity metric captures the variation introduced by back-translation. 

Example: For the sentence “The cat sat on the mat,” back-translation might gen-
erate “The feline rested on the rug.” Although the structure and word choice differ, 
the meaning remains consistent, providing a useful augmentation. 

Techniques for Image Data 

Image data augmentation involves applying transformations to images to generate 
new variations while preserving the essential features that define the objects in the 
images. Common techniques include rotation, scaling, flipping, and adding noise. 

Rotation and Scaling: Let .I (x, y) represent the intensity of an image at pixel 
coordinates .(x, y). Rotation by an angle . θ and scaling by a factor . α transform the 
image coordinates according to 

. 

(
x ′
y′

)
= α

(
cos θ − sin θ

sin θ cos θ

)(
x
y

)
.

The transformed image.I ′(x ′, y′) retains the content of the original image but with 
altered orientation and size. 

Flipping: Flipping an image horizontally or vertically changes the pixel coordi-
nates as follows: 

Horizontal flip: .x ′ = −x . 
Vertical flip: .y′ = −y. 
These transformations preserve the structure of the image while introducing 

variability in the dataset.
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Adding Noise: Noise can be added to images by perturbing the pixel values. Let 
.I (x, y) be the original pixel value at .(x, y). Additive Gaussian noise is defined as 

. I ′(x, y) = I (x, y) + ε(x, y),

where.ε(x, y) ∼ N (0, σ 2) is Gaussian noise with mean 0 and variance.σ 2. The noise 
introduces randomness while maintaining the overall content of the image. 

Remark (Invariance under Image Augmentation): For an image classifica-
tion model, let . f (I ) be the predicted class label for an image . I . An augmentation 
transformation . T should satisfy the invariance property: 

. f (I ) = f (T (I )),

indicating that the model’s prediction remains consistent across different augmenta-
tions of the same image. 

Example: Consider an image of a cat. Augmentations such as rotating the image 
by 15 degrees, flipping it horizontally, or adding slight Gaussian noise should still 
allow the model to correctly classify the image as “cat.” 
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Chapter 3 
Attention Mechanisms: Theory 
and Variations 

3.1 Attention Mechanisms 

Attention mechanisms are a cornerstone of modern deep learning architectures, par-
ticularly in natural language processing and computer vision. They allow models to 
focus on specific parts of the input data, enabling more effective and context-aware 
processing. This section explores the theoretical underpinnings of different types of 
attention mechanisms, focusing on scalar, vector, and matrix attention. Each type 
of attention mechanism is examined in detail, with mathematical formulations and 
examples to illustrate their principles and applications. 

3.1.1 Scalar, Vector, and Matrix Attention 

Attention mechanisms can be categorized based on the dimensionality of the attention 
scores they produce. Scalar, vector, and matrix attention differ in how they represent 
the relevance of different parts of the input, and each has its unique applications and 
advantages. 

3.1.2 Scalar Attention 

Scalar attention is the most straightforward form of attention, where a single scalar 
weight is assigned to each element of the input sequence. This weight represents the 
relevance of the corresponding element in the sequence to the task at hand. 

Given an input sequence .x = {x1, x2, . . . , xn}, scalar attention computes a set of 
attention scores .α = {α1, α2, . . . , αn}, where each .αi is a scalar value. These scores 
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are typically derived from a similarity measure between a query vector . q and each 
element .xi in the sequence: 

. αi = softmax(ei ), where ei = q�ki ,

where .ki is the key vector associated with . xi , and .softmax(ei ) ensures that the 
attention scores sum to one: 

. αi = exp(ei )
∑n

j=1 exp(e j )
.

The final output of scalar attention is a weighted sum of the input elements, where 
each element .xi is scaled by its corresponding attention score . αi : 

. z =
n∑

i=1

αi xi .

This output . z is a context vector that aggregates the information from the input 
sequence, focusing more on the relevant elements as determined by the attention 
scores. 

Let. z be the output of scalar attention for the input sequence. x. Then,. z is a convex 
combination of the input elements: 

. z =
n∑

i=1

αi xi , where
n∑

i=1

αi = 1 and αi ≥ 0.

This convex combination ensures that the output . z lies within the convex hull of 
the input sequence . x, meaning it is a weighted average of the input elements. 

Example: In a machine translation task, scalar attention might be used to determine 
which words in the source sentence should be most emphasized when generating each 
word in the target sentence. The attention scores .αi reflect the importance of each 
source word for producing the current target word. 

3.1.3 Vector Attention 

Vector attention extends scalar attention by assigning a vector of attention scores 
to each element in the input sequence. This approach allows the model to capture 
more complex relationships between the elements by considering multiple aspects 
of relevance simultaneously. 

Given an input sequence .x = {x1, x2, . . . , xn}, vector attention computes a set of 
attention vectors.α = {α1,α2, . . . ,αn}, where each.αi is a vector in.Rd . These vectors 
are typically derived from a similarity measure between a query vector . q and each
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element .xi in the sequence, followed by a softmax operation applied element-wise: 

. αi = softmax(Wki ),

where .ki is the key vector associated with . xi , and .W is a learned weight matrix that 
projects the key vectors into the same space as the query vector. 

The final output of vector attention is a weighted sum of the input elements, where 
each element .xi is scaled by its corresponding attention vector . αi : 

. z =
n∑

i=1

αi � xi ,

where .� denotes element-wise multiplication. This allows the model to focus on 
different aspects of the input elements simultaneously. 

Let . z be the output of vector attention for the input sequence . x. Then, . z is a 
linear combination of the input elements, with each dimension of the output being 
influenced by a different combination of input elements: 

. z j =
n∑

i=1

αi j xi j ,

where .αi j is the . j-th component of the attention vector . αi . This multi-dimensional 
attention allows the model to capture more nuanced relationships between the input 
elements. 

Example: In image captioning, vector attention might be used to focus on different 
regions of an image when generating each word of the caption. The attention vectors 
.αi could represent different visual features such as color, shape, and texture, enabling 
the model to generate more detailed and accurate descriptions. 

3.1.4 Matrix Attention 

Matrix attention further generalizes attention mechanisms by assigning a matrix of 
attention scores to each pair of elements in the input sequence. This allows the model 
to capture interactions between pairs of elements, rather than just between individual 
elements and a query. 

Given an input sequence .x = {x1, x2, . . . , xn}, matrix attention computes a set 
of attention matrices .A = {Ai j }, where each .Ai j ∈ R

d×d represents the interaction 
between elements .xi and . x j . These matrices are derived from similarity measures 
between pairs of elements, possibly involving queries and keys: 

.Ai j = softmax(q�
i Wk j ),
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where .qi and .k j are the query and key vectors for elements .xi and . x j , respectively, 
and .W is a learned weight matrix. 

The final output of matrix attention is a transformed version of the input sequence, 
where each element is influenced by the interactions captured in the attention 
matrices: 

. zi =
n∑

j=1

Ai j x j .

This output. zi reflects the combined influence of all other elements in the sequence 
on the element. xi , with each influence weighted by the corresponding attention matrix 
.Ai j . 

Let. zi be the output of matrix attention for the input sequence. x. The output can be 
expressed as a bilinear form involving the input elements and the attention matrices: 

. zi =
n∑

j=1

x�
j Ai j x j .

This bilinear form captures the second-order interactions between input elements, 
allowing the model to encode more complex relationships. 

In graph neural networks, matrix attention can be used to model the relationships 
between nodes in a graph. Each node’s representation is updated based on its con-
nections to other nodes, with the strength and type of connection captured by the 
attention matrices .Ai j . 

3.2 Self-Attention 

Self-attention is a foundational mechanism in modern deep learning architectures, 
particularly in the context of NLP and computer vision. It allows a model to weigh the 
relevance of different parts of the same input sequence when encoding that sequence 
into a representation. This section explores the mathematical foundation of self-
attention, including its specific variants like dot-product attention, scaled dot-product 
attention, and masked self-attention. 

Self-attention mechanisms are designed to allow each element in a sequence to 
attend to every other element in that sequence, effectively enabling the model to 
capture dependencies regardless of their distance in the sequence. 

3.2.1 Mathematical Definition 

Given an input sequence .x = {x1, x2, . . . , xn} where each .xi ∈ R
d represents a d-

dimensional vector, the goal of self-attention is to produce a new sequence of the
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same length, where each element .zi is a weighted sum of all elements in the input 
sequence, with the weights determined by the relevance of the elements to each other. 

The self-attention mechanism can be mathematically defined as 

. zi =
n∑

j=1

αi jv j ,

where .αi j are the attention weights and .v j are value vectors derived from the input 
. x j . The weights.αi j are calculated based on the compatibility between a query vector 
.qi associated with .xi and a key vector .k j associated with . x j : 

. αi j = exp(q�
i k j )

∑n
k=1 exp(q

�
i kk)

,

where .qi = Wqxi , .k j = Wkx j , and .v j = Wvx j are linear transformations of the 
input vectors using learned weight matrices .Wq , .Wk , and .Wv . 

The attention weights .αi j are non-negative and sum to one for each . i : 

. 

n∑

j=1

αi j = 1, αi j ≥ 0.

This ensures that the output .zi is a convex combination of the value vectors . v j , 
meaning the model can focus on the most relevant parts of the input sequence. 

Example: In a sentence, self-attention allows each word to consider every other 
word when forming its contextualized representation. For instance, in the sentence 
“The cat sat on the mat,” the representation of “sat” can attend to both “cat” and 
“mat” to better capture the meaning. 

3.2.2 Dot-Product Attention 

Dot-product attention is a specific form of self-attention where the similarity between 
query and key vectors is computed using the dot product. For an input sequence 
.x = {x1, x2, . . . , xn}, the attention score .ei j between elements .xi and .x j is given by 

. ei j = q�
i k j .

The attention weights .αi j are then obtained by applying the softmax function to 
the scores: 

.αi j = exp(q�
i k j )

∑n
k=1 exp(q

�
i kk)

.
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The final output for each element is a weighted sum of the value vectors: 

. zi =
n∑

j=1

αi jv j .

Let. d be the dimensionality of the input vectors. The dot-product attention mech-
anism computes the attention scores in .O(nd2) time for an input sequence of length 
. n. This efficiency is one reason dot-product attention is widely used in practice. 

Example: In machine translation, dot-product attention might be used to align 
words in the source and target languages, determining which source words should 
be emphasized when generating each word in the translation. 

3.2.3 Scaled Dot-Product Attention 

Scaled dot-product attention is a variation of dot-product attention that addresses 
the issue of large dot-product values when the dimensionality of the input vectors 
is high. By scaling the dot products, the softmax function produces more balanced 
gradients, leading to more stable training. 

Given an input sequence .x = {x1, x2, . . . , xn}, the attention score .ei j in scaled 
dot-product attention is computed as 

. ei j = q�
i k j√
d

,

where . d is the dimensionality of the key vectors. The attention weights .αi j are then 
computed as 

. αi j =
exp

(
q�
i k j√
d

)

∑n
k=1 exp

(
q�
i kk√
d

) .

The final output is computed as 

. zi =
n∑

j=1

αi jv j .

Scaling by . 1√
d
ensures that the dot products .ei j have a standard deviation close 

to 1, preventing the gradients from becoming too small or too large during training. 
This leads to more stable optimization and faster convergence.
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3.2.4 Masked Self-Attention 

Masked self-attention is a variant of self-attention where certain elements of the input 
sequence are masked (i.e., ignored) during the computation of attention scores. This 
is particularly useful in tasks like autoregressive language modeling, where future 
tokens should not be considered when predicting the current token. 

Given an input sequence.x = {x1, x2, . . . , xn}, the attention score.ei j is computed 
as 

. ei j =
{
q�
i k j if j ≤ i,

−∞ if j > i,

where . j > i indicates that .x j is a future token relative to . xi . The attention weights 
.αi j are then computed using the softmax function, where the softmax is only applied 
to the non-masked scores: 

. αi j = exp(ei j )
∑i

k=1 exp(eik)
.

The final output is computed as 

. zi =
i∑

j=1

αi jv j .

Masked self-attention enforces a causal structure in the output sequence, ensuring 
that each element .zi only depends on the previous elements in the sequence: 

. zi = f (x1, x2, . . . , xi ),

where . f is the function implemented by the attention mechanism. This causality is 
essential for tasks like language modeling, where predictions should not be influenced 
by future tokens. 

In autoregressive language models like GPT, masked self-attention ensures that 
when predicting the next word in a sentence, the model only considers the words that 
have already been generated, preventing information leakage from future words. 

3.3 Multi-head Attention 

Multi-head attention is an extension of the basic self-attention mechanism, designed 
to improve the model’s ability to focus on different parts of the input simultaneously. 
By using multiple attention heads, this mechanism allows the model to capture diverse 
aspects of the input data, leading to richer and more nuanced representations. In 
this section, we explore the mathematical principles behind multi-head attention,
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including parallel attention heads, concatenation and projection, and the role of head 
diversity and specialization. 

Multi-head attention involves running multiple self-attention mechanisms, or 
“heads,” in parallel, each focusing on different parts or aspects of the input. The 
outputs of these heads are then concatenated and linearly projected to produce the 
final output. 

3.3.1 Parallel Attention Heads 

Given an input sequence .x = {x1, x2, . . . , xn}, multi-head attention computes mul-
tiple sets of attention scores and value vectors, with each set corresponding to a 
different attention head. For the .h-th head, the query, key, and value vectors are 
computed as 

. q(h)
i = W(h)

q xi , k(h)
j = W(h)

k x j , v(h)
j = W(h)

v x j ,

where .W(h)
q ,W(h)

k ,W(h)
v are the learned weight matrices specific to the .h-th head. 

The attention score .α
(h)
i j and the output .z(h)

i for each head are computed as: 

. α
(h)
i j =

exp

(
q(h)�
i k(h)

j√
dk

)

∑n
k=1 exp

(
q(h)�
i k(h)

k√
dk

) ,

. z(h)
i =

n∑

j=1

α
(h)
i j v

(h)
j ,

where .dk is the dimensionality of the key vectors. 
For any two attention heads. h and. h′, the corresponding attention scores .α(h)

i j and 

.α
(h′)
i j are computed independently, leading to diverse attention patterns: 

. α
(h)
i j and α

(h′)
i j are independent ifW(h)

q 
= W(h′)
q or W(h)

k 
= W(h′)
k .

This independence allows the model to focus on different aspects of the input 
simultaneously, enhancing its ability to capture complex patterns. 

Example: In a machine translation model, one attention head might focus on word 
order, another on syntactic dependencies, and another on semantic content. Each head 
attends to different elements of the input sentence, providing a richer representation 
for the translation task.
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3.3.2 Concatenation and Projection 

After computing the outputs.z(h)
i from all.H heads, these outputs are concatenated to 

form a single vector. This concatenated vector is then projected back into the original 
dimensional space using a learned weight matrix. 

Formally, the concatenated vector .zconcati is given by 

. zconcati = z(1)
i ‖ z(2)

i ‖ . . . ‖ z(H)
i ,

where . ‖ denotes vector concatenation. The final output .zi is obtained by applying a 
linear transformation to the concatenated vector: 

. zi = Wozconcati ,

where .Wo is the learned projection matrix. 
Let .dh be the dimensionality of each head’s output vector .z(h)

i , and let .do be the 
dimensionality of the final output vector . zi . Then 

. dim(zconcati ) = H × dh, dim(zi ) = do.

The projection matrix .Wo transforms the concatenated vector from . H × dh
dimensions back to .do dimensions, ensuring that the final output has the same 
dimensionality as the input sequence elements. 

In a transformer model, after each attention head has processed its part of the input 
sequence, the results are concatenated and projected to form a unified representation 
that integrates the diverse information captured by each head. This projection step 
ensures that the output remains compatible with subsequent layers in the model. 

3.3.3 Head Diversity and Specialization 

One of the key advantages of multi-head attention is the ability of different heads 
to specialize in capturing different types of relationships within the input data. This 
specialization emerges naturally from the independent training of each head, which 
allows them to focus on different patterns and features. 

Let.H be the number of attention heads, and let.z(h)
i represent the output of the.h-th 

head. The diversity of the heads can be quantified by the variance in their outputs: 

.Diversity(z(1)
i , z(2)

i , . . . , z(H)
i ) = 1

H

H∑

h=1

∥
∥
∥z(h)

i − zi
∥
∥
∥
2
,
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where . zi is the mean output vector across all heads: 

. zi = 1

H

H∑

h=1

z(h)
i .

A higher diversity score indicates that the heads are capturing different aspects 
of the input, leading to a more comprehensive overall representation. If the attention 
heads in multi-head attention are trained independently, then each head tends to 
specialize in a different feature or aspect of the input sequence. Formally, the expected 
specialization .E[Spec(h)] of the .h-th head is maximized when the outputs .z(h)

i are 
orthogonal to each other: 

. E[Spec(h)] = max subject to z(h)
i ⊥ z(h′)

i , ∀h 
= h′.

This orthogonality ensures that each head contributes unique information to the 
final representation. 

Example: In a sentiment analysis task, one attention head might specialize in 
detecting negations, another in identifying strong emotional words, and another in 
understanding the overall sentence structure. The diversity and specialization of these 
heads enable the model to capture a wide range of linguistic cues, leading to more 
accurate sentiment predictions. 

3.4 Cross-Attention 

Cross-attention is a specialized form of attention that allows a model to focus on 
and integrate information from two different sequences or sets of data. It is a cru-
cial component in encoder–decoder architectures, where the model must align and 
combine information from an input sequence (e.g., a source sentence) with an output 
sequence (e.g., a target sentence). This section provides a mathematical exploration 
of cross-attention, including its formulation and applications in encoder–decoder 
models. 

Cross-attention differs from self-attention in that it operates on two distinct sets 
of input sequences. It computes the relevance of elements from one sequence with 
respect to elements of another sequence, allowing the model to transfer and align 
information between the two sequences. 

Given two sequences, an *encoder sequence* .x(e) = {x (e)
1 , x (e)

2 , . . . , x (e)
m } and 

a *decoder sequence* .x(d) = {x (d)
1 , x (d)

2 , . . . , x (d)
n }, cross-attention computes a 

weighted sum of the encoder sequence elements for each element in the decoder 
sequence. This enables the decoder to focus on relevant parts of the encoder’s output 
when generating its own sequence. 

The cross-attention mechanism computes the attention score.αi j between the.i-th 
element of the decoder sequence and the . j-th element of the encoder sequence as
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. αi j =
exp

(
q(d)�
i k(e)

j

)

∑m
k=1 exp

(
q(d)�
i k(e)

k

) ,

where.q(d)
i = Wqx

(d)
i is the query vector derived from the.i-th decoder element, and 

.k(e)
j = Wkx

(e)
j is the key vector derived from the. j-th encoder element, with.Wq and 

.Wk being learned weight matrices. 
The output of the cross-attention mechanism for the .i-th decoder element is then 

computed as 

. z(d)
i =

m∑

j=1

αi jv
(e)
j ,

where .v(e)
j = Wvx

(e)
j is the value vector associated with the . j-th encoder element 

and .Wv is another learned weight matrix. 
The output .z(d)

i of cross-attention for the .i-th decoder element is a convex 
combination of the value vectors .v(e)

j from the encoder sequence: 

. z(d)
i =

m∑

j=1

αi jv
(e)
j , where

m∑

j=1

αi j = 1 and αi j ≥ 0.

This convex combination ensures that the decoder’s output at each step is a 
weighted average of the encoder’s output, with the weights reflecting the relevance 
of each encoder element to the current decoding step. 

Example: In a machine translation model, cross-attention allows the decoder to 
focus on relevant words or phrases from the source sentence (encoded by the encoder) 
while generating the target sentence. For instance, when translating “The cat sat on 
the mat” to another language, the decoder attends to the words “cat” and “sat” to 
generate the corresponding translation for the verb phrase in the target language. 

3.4.1 Applications in Encoder–Decoder Models 

Encoder–decoder models, particularly in tasks like machine translation and 
sequence-to-sequence learning, rely heavily on cross-attention to transfer informa-
tion from the input (encoder) to the output (decoder). In these models, the encoder 
first processes the input sequence into a set of context-aware representations. The 
decoder then uses cross-attention to dynamically attend to these representations 
while generating the output sequence. 

Formally, let .H(e) = {h(e)
1 ,h(e)

2 , . . . ,h(e)
m } be the set of hidden states produced by 

the encoder for the input sequence. During each decoding step, the decoder state. s(d)
i

is updated by attending to the encoder states:
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. s(d)
i = DecoderRNN

(
x(d)
i , z(d)

i

)
,

where .z(d)
i is the cross-attention output for the .i-th decoder step, and . DecoderRNN

represents the recurrent neural network (RNN) or any other processing unit used in 
the decoder. 

Let.H(e) be the encoder hidden states and.S(d) be the decoder hidden states. Cross-
attention ensures that each decoder state .s(d)

i depends on a weighted combination of 
the encoder states: 

. s(d)
i = f

⎛

⎝x(d)
i ,

m∑

j=1

αi jh
(e)
j

⎞

⎠ ,

where . f is a function determined by the decoder architecture. This dependence 
guarantees that the decoder generates outputs that are contextually aligned with the 
input sequence. 

Example: In an image captioning task, the encoder might process an image into 
a set of feature vectors representing different regions of the image. The decoder 
then uses cross-attention to focus on specific regions of the image while generating 
each word of the caption. For example, when generating the word “dog,” the decoder 
attends to the region of the image where the dog is located, ensuring that the generated 
caption accurately describes the image. 

3.5 Efficiency and Variations 

Attention mechanisms, while powerful, can be computationally expensive, particu-
larly when applied to long sequences. This section explores various efficient atten-
tion mechanisms designed to reduce the computational complexity of traditional 
self-attention while maintaining or even enhancing performance. We will examine 
several approaches, including Sparse Attention, Linformer, Longformer, Reformer, 
and Performer, each of which introduces unique strategies to optimize attention 
calculations. 

3.5.1 Efficient Attention Mechanisms 

The self-attention mechanism in its basic form has a computational complexity of 
.O(n2d), where . n is the sequence length and . d is the dimensionality of the embed-
dings. This quadratic dependence on the sequence length becomes a bottleneck for 
long sequences, necessitating the development of more efficient alternatives. The 
mechanisms discussed here aim to reduce this complexity, often by approximating 
the full attention matrix or by limiting the number of interactions considered.
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3.5.2 Sparse Attention 

Sparse attention mechanisms reduce the computational burden by restricting the 
attention computation to a subset of the elements in the input sequence. Instead 
of computing attention weights for every pair of elements in the sequence, sparse 
attention only computes weights for a predefined set of pairs, effectively reducing the 
number of interactions from .O(n2) to .O(n · k), where . k is the number of non-zero 
attention weights per query. 

Formally, let .Si ⊂ {1, 2, . . . , n} be the set of indices for which the attention is 
computed for the .i-th element. The attention score .αi j is computed as 

. αi j =
⎧
⎨

⎩

exp(q�
i k j)

∑
k∈Si

exp(q�
i kk)

, if j ∈ Si ,

0, if j /∈ Si .

The output for the .i-th element is then computed as 

. zi =
∑

j∈Si

αi jv j .

If the size of the sparse set .Si is . k, then the computational complexity of sparse 
attention is .O(n · k · d), where .k � n. This represents a significant reduction in 
complexity, particularly for large sequences. 

Example: In natural language processing tasks, sparse attention can be imple-
mented by allowing each word to attend only to nearby words within a fixed window 
or to a predefined set of important words (e.g., the beginning of the sentence). 

3.5.3 Linformer 

Linformer ([ 4]) is an efficient attention mechanism that approximates the full self-
attention by projecting the sequence length . n down to a fixed lower-dimensional 
space . k, where .k � n. This reduces the quadratic complexity of self-attention to 
linear. 

Given an input sequence .x ∈ R
n×d , Linformer introduces a projection matrix 

.P ∈ R
n×k that projects the sequence dimension down to . k: 

. PK, PV,

where .K and .V are the key and value matrices, respectively. The attention score 
computation is then based on these projected matrices: 

.A = softmax
(
Q(PK)�

)
,
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where .Q is the query matrix. The output is 

. Z = A(PV),

with .Z ∈ R
n×d . 

The computational complexity of Linformer is .O(ndk), where . k is the reduced 
dimension. Since . k is typically much smaller than . n, this results in significant 
computational savings. 

Example: In sequence modeling tasks like document classification, Linformer can 
be applied to long documents where reducing the sequence length during attention 
computation leads to faster processing without sacrificing much accuracy. 

3.5.4 Longformer 

Longformer ([ 1]) introduces an efficient attention mechanism by combining sparse 
attention patterns with global attention. The model is designed to handle very 
long sequences by mixing local attention (where each token attends to a small 
neighborhood) and global attention (where specific tokens attend to all other tokens). 

For a sequence.x = {x1, x2, . . . , xn}, Longformer defines a local attention window 
.w such that each token .xi attends to the tokens within a window .[i − w, i + w]. 
Global attention is applied to a small subset of important tokens (e.g., CLS tokens 
in classification tasks), which attend to all tokens in the sequence. 

The attention score for token .xi in the local window is given by 

. αi j = exp
(
q�
i k j

)

∑i+w
k=i−w exp

(
q�
i kk

) ,

and for global attention: 

. αi j = exp
(
q�
i k j

)

∑n
k=1 exp

(
q�
i kk

) for global tokens.

The computational complexity of Longformer is .O(nwd) for local attention, 
where .w is the window size, and .O(nd) for global attention applied to a small 
number of tokens, typically resulting in a much lower overall complexity compared 
to full attention. 

In tasks like document classification or language modeling on long texts, Long-
former can efficiently handle sequences of thousands of tokens, applying detailed 
attention locally while still capturing global context through selectively applied 
global attention.
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3.5.5 Reformer 

Reformer ([ 3]) is an efficient attention mechanism that reduces the quadratic com-
plexity of self-attention using two key innovations: locality-sensitive hashing (LSH) 
and reversible residual layers. 

LSH reduces the number of interactions by hashing the queries and keys into 
buckets such that only queries and keys in the same bucket are considered for attention 
computation. Formally, the queries. Q and keys.K are hashed using an LSH function 
. h: 

. h(Q), h(K) ∈ {1, 2, . . . , B},

where . B is the number of buckets. The attention is then computed only within each 
bucket, significantly reducing the number of computations. 

The reversible residual layers allow the model to save memory during training by 
recomputing activations from the output rather than storing them, further enhancing 
efficiency. 

The computational complexity of Reformer is .O(n log n · d), where the . log n
factor comes from the LSH-based bucket sorting. This is a substantial reduction 
from the quadratic complexity of traditional self-attention. 

Reformer is particularly useful in tasks like image processing or long text mod-
eling, where both the sequence length and the need for efficiency are high. The 
LSH-based approach ensures that only relevant interactions are computed, leading 
to significant speedups. 

3.5.6 Performer 

Performer ([ 2]) introduces a method called FAVOR+ (Fast Attention Via Orthogonal 
Random Features), which approximates the softmax attention mechanism with a 
linear attention mechanism that scales linearly with the sequence length. 

For a sequence .x = {x1, x2, . . . , xn}, Performer approximates the attention score 
. A using orthogonal random features.φ(qi ) and.φ(k j ), where. φ is a feature mapping: 

. Ai j = φ(qi )�φ(k j ).

The output is computed as 

. Z = φ(Q)�Vφ(K)�,

where . Q, . K, and . V are the query, key, and value matrices, respectively. 
The computational complexity of Performer is .O(nd2), where . d is the dimen-

sionality of the embeddings, making it linear in sequence length and highly efficient 
for long sequences.
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Performer is ideal for tasks requiring the processing of very long sequences, 
such as DNA sequence analysis or long document processing, where maintaining 
efficiency without sacrificing performance is crucial. 

3.6 Variations in Attention 

Attention mechanisms have evolved significantly since their inception, with various 
modifications aimed at improving their efficiency, expressiveness, and adaptability. 
This section explores some of the most impactful variations in attention, includ-
ing global and local attention, hierarchical attention, adaptive attention span, and 
dynamic convolutions. Each variation is designed to address specific challenges or 
limitations of traditional self-attention, and we will examine them with a focus on 
their mathematical foundations. 

3.6.1 Global and Local Attention 

Global and local attention refer to two distinct approaches in which attention can be 
applied across sequences. Global attention allows each element of the sequence to 
attend to every other element, while local attention restricts the attention scope to a 
smaller, localized window around each element. 

For an input sequence .x = {x1, x2, . . . , xn}, global attention computes the 
attention score .αi j between every pair of elements .xi and . x j : 

. αi j = exp(q�
i k j )

∑n
k=1 exp(q

�
i kk)

,

where .qi = Wqxi and .k j = Wkx j are the query and key vectors, respectively. 
In contrast, local attention restricts the computation to a fixed window size . w,  so  

that each element .xi only attends to elements within a window.[i − w, i + w]: 

. αi j = exp(q�
i k j )

∑min(n,i+w)

k=max(1,i−w) exp(q
�
i kk)

for j ∈ [i − w, i + w].

The computational complexity of global attention is .O(n2d), whereas local 
attention reduces this to .O(nwd), where .w is the window size. This reduction is 
particularly beneficial when . n is large, and .w is much smaller than . n. 

In text processing, global attention might be used in tasks where understanding 
the entire context is crucial, such as in document classification, while local attention 
is more suitable for tasks like language modeling, where dependencies are typically 
local.
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3.6.2 Hierarchical Attention 

Hierarchical attention introduces a multi-level approach to attention, where attention 
mechanisms are applied at different levels of abstraction within the data. This is 
particularly useful in tasks that involve multi-scale data, such as document-level text 
processing or video analysis. 

Given a sequence .x = {x1, x2, . . . , xn} with a hierarchical structure, let .z(l) rep-
resent the output of the attention mechanism at level . l. The hierarchical attention 
mechanism first applies attention at the lowest level (e.g., word level): 

. z(1)
i =

n∑

j=1

α
(1)
i j v

(1)
j ,

where .α
(1)
i j are the attention weights computed at level 1. The output .z(1) then forms 

the input to the next level of attention (e.g., sentence level): 

. z(2) =
m∑

j=1

α
(2)
i j z

(1)
j ,

and so on, until the highest level of abstraction is reached. 
Let. L be the number of levels in the hierarchy. The expressive power of hierarchical 

attention is given by the combination of attentions at each level: 

. z(L) = f

⎛

⎝
n1∑

j1=1

α
(1)
i1 j1

. . .

nL∑

jL=1

α
(L)
iL jL

v(L)
jL

⎞

⎠ ,

where . f is the function implemented by the hierarchical structure. This layered 
approach allows for a richer representation of complex, multi-scale data. 

Example: In document classification, hierarchical attention might first attend to 
words within sentences, then to sentences within paragraphs, and finally to para-
graphs within the document, allowing the model to capture nuanced relationships at 
multiple levels. 

3.6.3 Adaptive Attention Span 

Adaptive attention span introduces a mechanism where the attention span, or the 
window size over which attention is computed, is dynamically adjusted based on the 
needs of the task. This allows the model to allocate more computational resources 
to important parts of the sequence while reducing the attention span for less critical 
parts.
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Given a sequence .x = {x1, x2, . . . , xn}, the adaptive attention span mechanism 
computes a dynamic window size.wi for each element. xi , typically based on a learned 
gating function: 

. wi = softmax(Wwxi ),

where.Ww is a learned weight matrix. The attention score.αi j is then computed over 
the dynamically determined window.[i − wi , i + wi ]: 

. αi j = exp(q�
i k j )

∑i+wi
k=i−wi

exp(q�
i kk)

.

Let.wmax be the maximum possible attention span. The computational complexity 
of adaptive attention span is .O(nwmaxd), but, in practice, this complexity is reduced 
due to the adaptive nature of .wi , which can be much smaller than .wmax for many 
elements. 

In language modeling, adaptive attention span allows the model to focus on longer 
dependencies for complex sentences while reducing the attention span for simpler 
sentences or less critical words, improving both efficiency and performance. 

3.6.4 Dynamic Convolutions 

Dynamic convolutions combine the strengths of CNNs with the flexibility of atten-
tion mechanisms. In dynamic convolutions, the convolutional filters are dynamically 
generated based on the input sequence, allowing the model to adapt its filters to 
different parts of the input. 

For an input sequence .x = {x1, x2, . . . , xn}, a dynamic convolution mechanism 
generates a set of filters .Fi for each element . xi : 

. Fi = WFxi ,

where .WF is a learned weight matrix. The convolution operation is then applied 
using these dynamically generated filters: 

. zi =
w∑

j=−w

Fi · xi+ j ,

where .w is the window size and . · denotes the convolution operation. 
Dynamic convolutions increase the expressive power of the model by allowing 

the convolutional filters to adapt to the input. Formally, the output . zi is a function of 
both the input and the dynamically generated filters: 

.zi = f (WFxi , xi−w:i+w) ,
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where. f is the convolution operation. This allows the model to capture more complex 
patterns and dependencies within the input. 

In speech recognition, dynamic convolutions can adapt to different phonemes or 
speech patterns, allowing the model to process varying speech inputs more effectively 
by adjusting the convolutional filters dynamically. 

3.7 Mathematical Properties 

Understanding the mathematical properties of attention mechanisms is crucial for 
analyzing their efficiency and scalability in practical applications. This section delves 
into the complexity analysis of attention mechanisms, focusing on time complexity 
and space complexity. A mathematical treatment of these aspects provides insights 
into the trade-offs involved in using different attention mechanisms, particularly in 
terms of their computational requirements. 

3.7.1 Complexity Analysis 

The complexity analysis of attention mechanisms involves evaluating the computa-
tional resources required to execute the attention operations. This includes both the 
time complexity, which measures how the computation time scales with the size of 
the input, and the space complexity, which assesses the amount of memory required. 

Time Complexity 

Time complexity measures the amount of time an algorithm takes to complete as a 
function of the size of the input. For attention mechanisms, the primary factors influ-
encing time complexity are the length of the input sequence. n and the dimensionality 
of the feature vectors . d. 

In traditional self-attention, for an input sequence.x = {x1, x2, . . . , xn}, the atten-
tion scores are computed between every pair of elements, resulting in .n2 compar-
isons. For each comparison, a dot product operation is performed, which has a time 
complexity of .O(d). Therefore, the overall time complexity of the self-attention 
mechanism is 

. Time Complexity = O(n2 · d).

Let .T (n, d) denote the time complexity of the self-attention mechanism. Then 

.T (n, d) = O(n2 · d).
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This quadratic time complexity in terms of the sequence length . n becomes a sig-
nificant bottleneck for large sequences, motivating the development of more efficient 
attention mechanisms. 

Examples: 
1. Global Attention: As discussed earlier, global attention computes attention 

scores between all pairs of elements in the sequence, leading to a time complexity 
of .O(n2 · d). 

2. Local Attention: By restricting attention to a local window of size . w, the time 
complexity is reduced to .O(n · w · d), where .w is typically much smaller than . n. 

3. Linformer: By projecting the sequence length .n down to a fixed lower-
dimensional space . k, Linformer reduces the time complexity to .O(n · k · d), where 
. k is a small constant relative to . n. 

Space Complexity 

Space complexity measures the amount of memory required to execute an algorithm 
as a function of the input size. In the context of attention mechanisms, the key factors 
influencing space complexity are again the sequence length. n and the dimensionality 
of the feature vectors . d. 

For self-attention, the primary space requirement comes from storing the attention 
scores, which are typically represented as an .n × n matrix. Each element of this 
matrix requires .O(1) space, and thus the overall space complexity for storing the 
attention scores is 

. Space Complexity = O(n2).

In addition to the attention scores, the query, key, and value matrices each require 
.O(n · d) space. Therefore, the total space complexity of the self-attention mechanism 
is 

. Total Space Complexity = O(n2 + n · d).

Let .S(n, d) denote the space complexity of the self-attention mechanism. Then 

. S(n, d) = O(n2 + n · d).

This quadratic space complexity in terms of the sequence length . n is another 
factor that limits the scalability of self-attention, particularly when dealing with very 
large sequences. 

Examples: 
1. Global Attention: Similar to time complexity, global attention also requires 

storing an.n × n matrix of attention scores, leading to a space complexity of .O(n2). 
2. Sparse Attention: By restricting attention to a subset of elements, sparse atten-

tion mechanisms reduce the space complexity to .O(n · k), where . k is the number of 
non-zero attention weights per query.
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3. Linformer: Linformer further reduces space complexity by projecting the 
sequence into a lower-dimensional space, resulting in a space complexity of. O(n · k)
for storing the attention scores. 

3.7.2 Gradient Analysis 

Understanding the flow of gradients in attention mechanisms is critical for ensuring 
effective training, particularly in deep neural networks. This analysis involves exam-
ining how gradients propagate through the network, how they can be affected by 
the structure of the attention mechanism, and how techniques like gradient clipping 
and normalization can be employed to address potential issues such as vanishing or 
exploding gradients. 

Gradient Flow in Attention Mechanisms 

In attention mechanisms, the gradient flow is influenced by the softmax function used 
to compute attention weights and the dot products between query and key vectors. 
Given the attention score .αi j between elements .xi and . x j : 

. αi j = exp
(
q�
i k j

)

∑n
k=1 exp

(
q�
i kk

) ,

the gradient of .αi j with respect to the query vector .qi can be computed using the 
chain rule: 

. 
∂αi j

∂qi
= αi j

(

k j −
n∑

k=1

αikkk

)

.

This expression shows that the gradient depends not only on the specific key vector 
.k j but also on the weighted sum of all key vectors, highlighting the interconnected 
nature of the gradient flow in attention mechanisms. 

Let .gqi denote the gradient of the attention mechanism with respect to the query 
vector . qi . The magnitude of the gradient is given by 

. ‖gqi ‖ = ‖αi j (k j − k̄i )‖,

where .k̄i = ∑n
k=1 αikkk is the weighted average of the key vectors. The magnitude 

of the gradient can become small if the key vectors are similar, leading to potential 
issues with gradient flow. 

In practice, when key vectors are very similar across different elements of the 
sequence, the gradient may diminish, leading to slow learning. This phenomenon
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is particularly relevant in deep attention-based models where multiple layers of 
attention mechanisms are stacked. 

Gradient Clipping and Normalization 

Gradient clipping and normalization are techniques used to control the gradient 
magnitude during training, particularly in attention mechanisms where the gradients 
can become very large or very small due to the dot products involved. 

Gradient clipping involves capping the gradients at a maximum value to prevent 
them from becoming too large, which can destabilize the training process. Formally, 
let . g be the gradient vector, and . λ be the clipping threshold. The clipped gradient . g′
is given by 

. g′ = g · min

(

1,
λ

‖g‖
)

.

This ensures that the magnitude of the gradient .‖g′‖ does not exceed . λ, helping 
to prevent exploding gradients. 

Let . g be the original gradient, and .g′ the clipped gradient. The relative change 
in gradient direction is minimized when .‖g‖ ≤ λ, ensuring that clipping primarily 
affects the magnitude rather than the direction of the gradient: 

. 
g · g′

‖g‖‖g′‖ ≈ 1 if ‖g‖ ≤ λ.

Gradient normalization involves scaling the gradients to have a consistent 
magnitude, typically by normalizing them to unit norm: 

. g′ = g
‖g‖ .

This technique helps ensure stable learning rates and can prevent both vanishing 
and exploding gradients by keeping the gradient magnitudes within a manageable 
range. 

In deep networks with many layers of attention, gradient clipping and normal-
ization can be essential for maintaining stable training. Without these techniques, 
gradients can easily become unstable, particularly in the early stages of training. 

3.7.3 Convergence Properties 

Convergence properties of attention mechanisms refer to the behavior of the opti-
mization process as it approaches a minimum in the loss landscape. Convergence is
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influenced by the structure of the attention mechanism, the choice of optimization 
algorithm, and the learning rate schedule. 

For an attention mechanism with a loss function .L(θ), where . θ represents the 
parameters of the model, convergence is achieved when the gradient of the loss with 
respect to the parameters approaches zero: 

. lim
t→∞ ‖∇θ L(θ (t))‖ = 0,

where . t denotes the training iteration. 
For a convex loss function .L(θ) with Lipschitz-continuous gradient .∇θ L(θ),  the  

convergence rate of gradient descent is given b y 

. L(θ (t)) − L(θ∗) ≤ 1

2ηt
‖θ(0) − θ∗‖2,

where .θ∗ is the optimal parameter value, . η is the learning rate, and .θ(0) is the initial 
parameter value. 

In attention-based models, the convergence rate can be affected by the choice of 
learning rate schedule, with adaptive learning rates (e.g., Adam) often leading to faster 
convergence compared to fixed learning rates. Additionally, attention mechanisms 
with sparse gradients may require more careful tuning to achieve convergence. 

3.7.4 Stability and Robustness 

Stability and robustness refer to the ability of attention mechanisms to maintain 
performance in the presence of perturbations, such as noise in the input data or 
variations in model parameters. Stability is particularly important in ensuring that 
small changes in the input do not lead to disproportionately large changes in the 
output. 

For an attention mechanism. f (x; θ)with input. x and parameters. θ , robustness can 
be analyzed through the Lipschitz constant . K , which bounds the change in output 
relative to the change in input: 

. ‖ f (x1; θ) − f (x2; θ)‖ ≤ K‖x1 − x2‖,

where .K is the smallest constant for which the inequality holds. 
Let. f (x; θ) be an attention mechanism. If. f is Lipschitz continuous with constant 

. K , then the attention mechanism is robust to input perturbations, and the change in 
output is linearly bounded by the change in input: 

.‖ f (x1; θ) − f (x2; θ)‖ ≤ K‖x1 − x2‖.
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This property is critical in ensuring that the model’s predictions are stable and 
reliable. 

In tasks like image recognition or natural language processing, where input data 
can be noisy or imprecise, the robustness of attention mechanisms ensures that the 
model’s output remains consistent, even in the face of such challenges. 

3.8 Theoretical Challenges and Future Directions 

As attention mechanisms continue to evolve and play a central role in modern 
deep learning architectures, several theoretical challenges remain. Addressing these 
challenges is crucial for the scalability, efficiency, and broader applicability of 
attention-based models. This section focuses on two key challenges: scalability to 
long sequences and memory efficiency. We will explore these challenges, using 
mathematical analysis to highlight the limitations and potential solutions. 

3.8.1 Scalability Issues 

One of the most significant challenges in attention mechanisms is scalability, par-
ticularly when dealing with long sequences. Traditional self-attention mechanisms 
exhibit quadratic complexity with respect to the sequence length, which makes them 
computationally infeasible for very long sequences. This section delves into the math-
ematical aspects of scaling attention mechanisms and explores potential avenues for 
improving scalability. 

Scaling to Long Sequences 

The challenge of scaling attention mechanisms to long sequences arises from the 
quadratic time and space complexity inherent in traditional self-attention. For an 
input sequence.x = {x1, x2, . . . , xn}, the attention mechanism computes the attention 
scores between every pair of elements, leading to a time complexity of.O(n2 · d) and a 
space complexity of.O(n2), where. n is the sequence length and. d is the dimensionality 
of the embeddings. 

Given the quadratic complexity, scaling self-attention to sequences with length 
.n � 1 becomes computationally expensive. For example, if . n increases by a fac-
tor of 10, the computational cost increases by a factor of 100, making the mecha-
nism impractical for sequences encountered in tasks like document processing, video 
analysis, or genomic data analysis. 

Approach 1: Sparse attention mechanisms address this issue by reducing the 
number of interactions considered in the attention computation. Instead of computing 
attention scores for every pair of elements, sparse attention focuses on a subset.Si of 
relevant elements for each query . xi :
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. αi j = exp(q�
i k j )

∑
k∈Si

exp(q�
i kk)

, for j ∈ Si .

By choosing .|Si | = k, where .k � n, the time complexity is reduced to . O(n · k ·
d). 

Approach 2: Another approach to scaling is through low-rank factorization of 
the attention matrix. The attention matrix . A is decomposed into lower-dimensional 
matrices .A ≈ BC, where .B ∈ R

n×r and .C ∈ R
r×n , and . r is the rank of the decom-

position. This reduces the time complexity to.O(n · r · d), where. r is typically much 
smaller than . n. 

Let. r be the rank of the attention matrix. A after factorization. The time complexity 
of computing the factorized attention is 

. T (n, r, d) = O(n · r · d),

which represents a significant reduction from the original .O(n2 · d) complexity. 
In natural language processing, when processing a book-length document, tradi-

tional self-attention would be computationally prohibitive. Sparse attention or low-
rank factorization can be applied to handle the sequence length more efficiently, 
making it feasible to process such long sequences. 

Memory Efficiency 

Memory efficiency is another crucial consideration, particularly for training and 
deploying large models on hardware with limited memory resources. The mem-
ory complexity of traditional self-attention is .O(n2), which can quickly become 
prohibitive as the sequence length . n increases. 

Memory limitations become particularly pronounced when deploying models on 
edge devices or when training very large models on GPUs with finite memory capac-
ity. The quadratic memory complexity of self-attention mechanisms often necessi-
tates compromises, such as reducing the batch size or sequence length, which can 
negatively impact model performance. 

Approach 1: Several memory-efficient attention mechanisms have been proposed 
to address this issue. One approach is to use memory-efficient sparse attention, where 
the attention computation is restricted to non-zero entries, significantly reducing the 
memory footprint. For example, if . k non-zero entries are considered per query, the 
memory complexity is reduced to .O(n · k). 

Approach 2: Another approach to improving memory efficiency is chunking the 
input sequence into smaller segments and applying attention within each segment 
independently. This reduces the memory requirement to .O((n/w) · w2), where. w is 
the chunk size. Recurrent mechanisms can be used to propagate information between 
chunks, maintaining long-range dependencies.
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Let .w be the chunk size and . n the sequence length. The memory complexity of 
chunked attention is 

. S(n, w) = O
( n

w
· w2

)
= O(n · w),

where .w can be chosen to balance between memory usage and attention range. 
Example: In speech processing, where long audio sequences need to be processed, 

chunking the sequence and applying attention within each chunk allow the model to 
fit within the memory constraints of standard GPUs, while still capturing essential 
dependencies. 

3.8.2 Interpretability and Explainability 

Interpretability and explainability are crucial for understanding how attention mech-
anisms make decisions, particularly in high-stakes applications such as medical diag-
nosis, autonomous driving, and legal decision-making. Despite the effectiveness of 
attention mechanisms, their often “black-box” nature poses significant challenges to 
gaining insights into their decision-making processes. 

Visualizing Attention Weights 

Attention weights are central to the functioning of attention mechanisms, as they 
determine the relative importance of different elements in the input sequence. Given 
an input sequence.x = {x1, x2, . . . , xn}, the attention weights.αi j computed between 
elements .xi and .x j are 

. αi j = exp
(
q�
i k j

)

∑n
k=1 exp

(
q�
i kk

) ,

where .qi and .k j are the query and key vectors, respectively. 
Visualizing these weights can provide insights into which parts of the input 

sequence the model considers important. For example, in a machine translation task, 
attention weights can reveal how the model aligns words in the source and target 
languages. 

Let . A be the attention matrix with elements .αi j . The interpretability of attention 
weights can be enhanced by visualizing the matrix. A as a heatmap, where each entry 
.αi j represents the strength of attention from.xi to . x j : 

. Interpretation(A) = Heatmap(A),

where the heatmap visually encodes the attention weights, providing an intuitive 
representation of the attention mechanism’s focus.
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In natural language processing tasks, attention weight visualizations can help 
linguists understand how the model is processing language by showing which words 
the model is focusing on at each step of the sequence. This can lead to a better 
understanding of the model’s behavior and highlight potential areas for improvement. 

Understanding Head Roles 

In multi-head attention mechanisms, each attention head computes its own set of 
attention weights, which are then combined to form the final output. Understanding 
the role of each head—whether it focuses on syntactic relationships, semantic con-
tent, or other features—can provide deeper insights into how the model processes 
information. 

Given .H attention heads, the attention output for head . h is computed as 

. z(h)
i =

n∑

j=1

α
(h)
i j v

(h)
j ,

where.α
(h)
i j are the attention weights for head. h, and.v(h)

j are the corresponding value 
vectors. The final output is a combination of all heads: 

. zi = Concat(z(1)
i , z(2)

i , . . . , z(H)
i )Wo,

where .Wo is a learned weight matrix. 
Let .z(h)

i represent the output of the .h-th head. The diversity and specialization of 
attention heads can be quantified by the variance in their outputs: 

. Diversity(z(1)
i , . . . , z(H)

i ) = 1

H

H∑

h=1

∥
∥
∥z(h)

i − zi
∥
∥
∥
2
,

where .zi is the mean output across all heads. A higher diversity score indicates that 
the heads are capturing different aspects of the input, leading to a richer overall 
representation. 

Example: In a transformer model used for text classification, different heads 
might specialize in detecting negations, understanding subject–verb relationships, 
or capturing overall sentiment. Analyzing the output of each head can reveal these 
specializations and improve the interpretability of the model.
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3.8.3 Future Directions in Attention Research 

As attention mechanisms continue to be a focal point in deep learning research, sev-
eral future directions are emerging. These include the development of novel attention 
mechanisms and the integration of attention with other model architectures to create 
hybrid models. This section explores these future directions with a focus on their 
theoretical foundations. 

Novel Attention Mechanisms 

The quest for novel attention mechanisms is driven by the need to address the limita-
tions of current models, such as computational inefficiency, lack of interpretability, 
and challenges in capturing long-range dependencies. One promising direction is 
the development of adaptive attention mechanisms that can dynamically adjust their 
behavior based on the input data. 

For instance, an adaptive attention mechanism might adjust the size of the attention 
window or the number of attention heads based on the complexity of the input 
sequence. Mathematically, this could involve a gating function.g(x) that determines 
the attention parameters . θ for each input sequence: 

. θ = g(x) and zi =
n∑

j=1

αi j (θ)v j (θ),

where .αi j (θ) and .v j (θ) are functions of the dynamically adjusted parameters . θ . 
Let .g(x) be a gating function that optimally adjusts the attention parameters 

based on the input sequence. The expected computational complexity.E[T (x)] of an 
adaptive attention mechanism can be lower than that of a fixed attention mechanism, 
particularly for sequences with varying complexity: 

. E[T (x)] < Tfixed(x),

where .Tfixed(x) is the complexity of the corresponding fixed attention mechanism. 
In visual tasks, an adaptive attention mechanism could dynamically allocate more 

attention resources to complex regions of an image, such as areas with high texture 
or detail, while reducing attention to simpler regions like backgrounds. 

Hybrid Models 

Hybrid models combine attention mechanisms with other types of neural archi-
tectures, such as CNNs or RNNs, to leverage the strengths of each approach. For 
example, a hybrid model might use a CNN to extract local features from an image 
and an attention mechanism to capture global dependencies.
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Let.fCNN represent the feature extraction function of a CNN and.fAttn the function 
of an attention mechanism. The output . z of a hybrid model can be represented as 

. z = fAttn(fCNN(x)),

where . x is the input data. The attention mechanism.fAttn processes the feature maps 
produced by the CNN to capture long-range dependencies and global context. 

The expressivity of the hybrid model .fHybrid is enhanced by the combination of 
local feature extraction and global context capture: 

. fHybrid(x) = fAttn(fCNN(x)) is more expressive than fCNN(x) or fAttn(x) alone.

This combination allows the model to perform better on tasks that require both 
local and global understanding, such as object detection or language translation. 

Example: In video analysis, a hybrid model might use a CNN to process individual 
frames and an attention mechanism to capture temporal dependencies across frames, 
leading to more accurate action recognition. 
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Chapter 4 
Transformer Architecture: Encoder 
and Decoder 

4.1 Encoder Structure 

The transformer architecture has revolutionized natural language processing by lever-
aging self-attention mechanisms to capture dependencies in sequential data without 
relying on recurrent or convolutional layers. The encoder is a critical component of 
the transformer, responsible for processing the input sequence and producing rep-
resentations that the decoder or downstream tasks can utilize. This section explores 
the structure of the encoder, focusing on the composition of its layers, particularly 
the multi-head attention mechanism and feedforward network, as well as the role of 
activation functions. 

The encoder in a transformer model consists of multiple layers, each composed 
of a multi-head attention mechanism followed by a feedforward network. The output 
of each layer is passed to the next, with residual connections and normalization steps 
ensuring stability and efficient training. The encoder’s layered structure allows it to 
capture complex dependencies and hierarchical representations of the input data (see 
Fig. 4.1). 

4.1.1 Layer Composition 

Each layer in the encoder is a composite of several sub-layers, designed to pro-
cess different aspects of the input. The primary sub-layers are the multi-head atten-
tion mechanism, which allows the model to focus on different parts of the input 
sequence simultaneously, and the feedforward network, which applies non-linear 
transformations to the attention outputs. 
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Fig. 4.1 Diagram of a 
Transformer Encoder, 
showcasing the interplay of 
multi-head self-attention and 
feedforward layers, where 
linear transformations and 
positional encodings enable 
the modeling of contextual 
relationships within vector 
spaces 

Multi-Head Attention Layer 

The multi-head attention mechanism is a cornerstone of the transformer’s ability 
to process sequences in parallel. For an input sequence .X ∈ R

n×d , where . n is the 
sequence length and . d is the dimensionality of the embeddings, the multi-head 
attention mechanism computes attention across multiple “heads,” each focusing on 
different aspects of the sequence. 

Let . h denote the number of attention heads. The input .X is first linearly trans-
formed into query, key, and value matrices . Q, . K, and . V, respectively, for each 
head: 

.Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i ,
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where.WQ
i ,.W

K
i , and.WV

i are learned weight matrices for the.i-th head. The attention 
score between queries and keys is computed as 

. Attention(Qi , Ki , Vi ) = softmax

(
QiK�

i√
dk

)
Vi ,

where .dk is the dimensionality of the keys (typically .dk = d/h). This operation 
results in an output matrix for each head, which is then concatenated and linearly 
transformed: 

. Z = Concat(Z1, Z2, . . . , Zh)WO ,

where .Zi is the output of the .i-th head, and .WO is a learned weight matrix that 
projects the concatenated outputs back to the original embedding space. 

The multi-head attention mechanism can express a wider range of dependencies 
compared to a single attention head. Formally, let .A be the set of attention func-
tions expressible by a single head, and .M be the set expressible by a multi-head 
mechanism. Then 

. A ⊂ M,

implying that multi-head attention can capture more complex patterns and relation-
ships in the data. 

Example: In machine translation, multi-head attention allows the model to focus 
on different parts of the source sentence when generating each word in the target 
sentence. One head might focus on subject–verb agreement, while another might 
capture noun–adjective pairings. 

Mathematical Formulation 

The self-attention mechanism, as implemented in the transformer encoder, is 
mathematically described by the following steps: 

1. Linear Transformations: Each input vector .xi from the sequence is linearly 
transformed into a query. qi ,  a  k  ey. ki , and a value.vi using the learned matrices.WQ , 
.WK , and .WV , respectively: 

. qi = xiWQ, ki = xiWK , vi = xiWV .

2. Attention Weight Calculation: The attention weight between two positions . i
and . j in the sequence is computed using the scaled dot product: 

.αi j =
exp

(
qik�

j√
dk

)
∑n

j ′=1 exp

(
qik�

j ′√
dk

) ,
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where .αi j represents the attention score between .qi and . k j , normalized across all 
keys. 

3. Weighted Sum of Values: The output for each position . i is a weighted sum of 
the values, weighted by the attention scores: 

. zi =
n∑
j=1

αi jv j .

4. Multi-Head Attention Output: The outputs from multiple heads are con-
catenated and projected back to the original dimension using a learned matrix 
.WO : 

. Z = Concat(z1, z2, . . . , zh)WO .

Example: In a sentence such as “The cat sat on the mat,” the attention mechanism 
allows the model to focus on the relevant parts of the sentence for each word being 
processed. For example, when processing “sat,” the model might pay more attention 
to “cat” than to other words. 

Attention Weight Calculation 

The calculation of attention weights is a critical part of the transformer’s ability to 
learn dependencies between different positions in the sequence. The attention weight 
.αi j is computed as 

. αi j = exp
(
qi · k j/

√
dk

)
∑n

k=1 exp
(
qi · kk/

√
dk

) ,

where.qi and.k j are the query and key vectors, respectively, for positions. i and. j , and 
.dk is the dimensionality of the key vectors. The use of the softmax function ensures 
that the attention weights sum to one, making them interpretable as probabilities. 

The stability of the attention mechanism is ensured by the scaling factor .
√
dk . 

Without this factor, the dot products .qi · k j could grow large in magnitude, leading 
to small gradients during training. By scaling the dot products, the gradients remain 
in a stable range, facilitating efficient learning. 

Example: If .dk = 64, and the dot product .qi · k j is 10, the scaled dot product 
becomes.10/

√
64 = 1.25. The softmax function applied to this value will produce a 

moderate attention weight, avoiding extreme values that could destabilize training. 

Head Concatenation and Projection 

After calculating the attention scores for each head, the outputs from all heads are 
concatenated to form a single vector. This concatenated vector is then projected back 
into the original embedding space using a learned projection matrix .WO :



4.1 Encoder Structure 187

. Z = Concat(z1, z2, . . . , zh)WO ,

where. zi represents the output from the.i-th head. The projection matrix.WO ensures 
that the multi-head attention output can be directly combined with the outputs of 
other layers in the transformer. 

The projection step ensures that the multi-head attention mechanism retains the 
ability to express complex relationships while reducing the dimensionality of the 
concatenated output. Formally, let .Z ∈ R

n×(h·dv) be the concatenated output from 
. h heads. The projection .WO maps . Z back to .Rn×d , preserving the richness of the 
multi-head attention while matching the model’s input dimension. 

Example: In machine translation, after processing different linguistic aspects 
through multiple heads, the projection step combines these aspects into a unified 
representation that can be used by subsequent layers to generate the final translation. 

Feedforward Layer 

Following the multi-head attention mechanism, each layer in the transformer encoder 
includes a feedforward network (FFN) that applies non-linear transformations to the 
attention outputs. The FFN consists of two linear transformations with a non-linear 
activation function in between: 

. FFN(z) = max(0, zW1 + b1)W2 + b2,

where .W1 and .W2 are weight matrices, .b1 and .b2 are bias vectors, and max(0, x) 
denotes the ReLU activation function. 

The two-layer FFN with non-linear activation is a universal approximator, mean-
ing it can approximate any continuous function on a compact domain, given sufficient 
dimensionality. Formally, for any continuous function . f : Rd → R and any .ε > 0, 
there exist weight matrices .W1, .W2 and bias vectors . b1, .b2 such that 

. ‖FFN(z) − f (z)‖ < ε for all z ∈ R
d .

In a transformer model, the FFN might be responsible for transforming the output 
of the attention mechanism into a form that captures complex non-linear interactions 
between the tokens, enabling the model to understand more abstract aspects of the 
input data. 

Layer Composition and Operation 

To recap, each layer in the transformer encoder consists of the following components 
arranged in sequence:
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1. Multi-Head Attention: Computes attention scores and outputs weighted sums 
of values. 

2. Add and Norm: A residual connection adds the input of the layer to the output 
of the attention mechanism, followed by layer normalization. 

3. Feedforward Network: Applies non-linear transformations to the normalized 
output of the attention mechanism. 

4. Add and Norm: A second residual connection adds the input of the FFN to its 
output, followed by another layer normalization. 

Let .Xin be the input to a layer. The layer output .Xout is given by 

. Xout = LayerNorm(FFN(LayerNorm(MultiHeadAttention(Xin) + Xin)) + LayerNorm(Xin)).

The use of residual connections and layer normalization ensures that the layer 
operations remain stable during training. Residual connections help mitigate the 
vanishing gradient problem, while layer normalization maintains a consistent range 
of activations, facilitating efficient gradient-based optimization. 

In practice, this layered structure allows the transformer encoder to build hier-
archical representations of the input data, where each layer captures increasingly 
abstract features. The stability provided by residual connections and normalization 
ensures that these features are learned effectively during training. 

Activation Functions (ReLU, GELU) 

Activation functions introduce non-linearity into the model, enabling it to learn com-
plex mappings from inputs to outputs. The two most commonly used activation func-
tions in transformers are the Rectified Linear Unit (ReLU) and the Gaussian Error 
Linear Unit (GELU). 

The ReLU activation function is defined as 

. ReLU(x) = max(0, x).

ReLU is computationally efficient and helps mitigate the vanishing gradient 
problem by allowing gradients to flow through the network for positive inputs. 

The GELU activation function is defined as 

. GELU(x) = x · �(x),

where .�(x) is the cumulative distribution function of the standard normal distri-
bution. GELU smoothly approximates the ReLU function and has been shown to 
improve performance in transformer models.
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The GELU function is differentiable and smooth, meaning its derivative does 
not have discontinuities. This smoothness can lead to better convergence properties 
during training, especially in deep models. 

In transformer models, GELU is often preferred over ReLU because its smooth-
ness can lead to more stable training and slightly better performance on complex 
tasks like language modeling. 

4.1.2 Normalization and Residual Connections 

The stability and trainability of deep neural networks, such as transformers, rely 
heavily on normalization techniques and the strategic use of residual connections. 
These components work together to maintain the flow of information and gradients 
through the network, enabling the training of very deep models without degradation 
in performance. 

Layer Normalization 

Layer normalization is a technique that normalizes the activations within each layer 
of the network, ensuring that they have a consistent distribution. Unlike batch nor-
malization, which normalizes across a batch of data, layer normalization operates on 
each individual sample independently. 

Given an input .x = [x1, x2, . . . , xd ] to a layer, where . d is the dimensionality of 
the input, layer normalization transforms . x as follows: 

. μx = 1

d

d∑
i=1

xi , σ 2
x = 1

d

d∑
i=1

(xi − μx)
2,

. x̂i = xi − μx√
σ 2

x + ε
,

. LayerNorm(x)i = γ x̂i + β,

where .μx is the mean, .σ 2
x is the variance of the input, . γ and . β are learnable param-

eters that scale and shift the normalized output, and . ε is a small constant added for 
numerical stability. 

Layer normalization is invariant to affine transformations of the input. That is, for 
any input. x and affine transformation.Ax + b, the layer normalization output satisfies 

.LayerNorm(Ax + b) = LayerNorm(x).
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This invariance ensures that the normalization is robust to changes in the scale 
and bias of the input, contributing to more stable training. 

In a transformer model, layer normalization is applied after the multi-head atten-
tion mechanism and after the feedforward network. This ensures that the outputs of 
these components have a stable distribution, which is crucial for the model’s ability 
to learn effectively. 

Impact on Training Stability 

Layer normalization improves training stability by reducing the internal covariate 
shift, which refers to changes in the distribution of layer inputs during training. By 
normalizing the activations, the learning process becomes more predictable, allowing 
for faster convergence and reducing the sensitivity to hyperparameters such as the 
learning rate. 

Let .z(l) be the activations at layer . l of a deep network with layer normalization. 
The gradient of the loss function. L with respect to the parameters of layer . l is given 
by 

. 
∂L

∂W(l)
= ∂L

∂z(l)
· ∂z(l)

∂W(l)
,

where.W(l) are the weights of layer. l. Layer normalization ensures that. ∂z(l)

∂W(l) remains 
well behaved, preventing gradients from exploding or vanishing and thus facilitating 
convergence. 

In deep transformers, the use of layer normalization in every layer helps maintain 
the consistency of the activations throughout the network, enabling the model to 
learn complex patterns over many layers without suffering from the vanishing or 
exploding gradient problems. 

Residual Connections 

Residual connections, also known as skip connections, are added between layers in 
deep neural networks to allow gradients to flow more easily through the network. 
These connections are particularly important in very deep models, where the risk of 
gradient vanishing increases with the depth of the network. 

In a residual block, the input . x to a layer is added directly to the output .F(x) of 
that layer: 

. y = x + F(x),

where.F(x) represents the transformation applied by the layer (e.g., the combination 
of multi-head attention and feedforward network in a transformer). 

Let. L be the loss function, and consider a deep network with residual connections. 
The gradient of the loss with respect to the input . x of a residual block is given by
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. 
∂L
∂x

= ∂L
∂y

·
(
1 + ∂F(x)

∂x

)
.

The identity component in the gradient ensures that gradients can flow directly 
through the network, bypassing the transformation.F(x) if necessary, which mitigates 
the vanishing gradient problem. 

In a transformer model, residual connections are used around both the multi-
head attention mechanism and the feedforward network. These connections allow 
the model to learn identity mappings more easily, which is important for preserving 
the original input information while adding new features. 

Skip Connections 

Skip connections are a special case of residual connections where the output of a 
layer is added to the input of a non-adjacent layer. These connections are particularly 
useful in networks with hierarchical structures, allowing higher layers to directly 
access information from lower layers. 

If .x1 is the input to an earlier layer and.F2(x2) is the output of a later layer, a skip 
connection adds .x1 to .F2(x2): 

. y = F2(x2) + x1.

This connection enables the model to combine low-level features with high-level 
features, improving the network’s ability to learn complex patterns. 

Skip connections facilitate hierarchical learning by allowing gradients to flow 
directly between non-adjacent layers. Formally, let . L be the loss function, and let . x1
and.x2 be the inputs to non-adjacent layers with a skip connection. The gradient with 
respect to .x1 is given by 

. 
∂L
∂x1

= ∂L
∂y

+ ∂L
∂F2(x2)

· ∂F2(x2)
∂x1

,

where the direct gradient flow through. y bypasses intermediate layers, ensuring that 
the model can effectively learn both low-level and high-level features. 

In a deep transformer network, skip connections might be used to allow the model 
to combine low-level syntactic features with high-level semantic features, improving 
the overall performance on tasks like machine translation or text summarization. 

Effect on Gradient Flow 

Residual and skip connections significantly improve the flow of gradients through the 
network during backpropagation. This improved gradient flow prevents the gradients
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from becoming too small as they are propagated through many layers, a problem 
known as the vanishing gradient problem. 

Consider a deep network without residual connections. The gradient of the loss 
. L with respect to the parameters of the first layer is given by 

. 
∂L

∂W1
= ∂L

∂WL
·
L−1∏
i=1

∂zi+1

∂zi
,

where .Wi are the weights of the .i-th layer and .zi are the activations at layer . i .  In  
deep networks, the product of derivatives can become very small, leading to vanishing 
gradients. 

With residual connections, the gradient is modified as follows: 

. 
∂L

∂W1
= ∂L

∂WL
·
(
1 +

L−1∏
i=1

∂zi+1

∂zi

)
,

where the identity component “1” prevents the gradient from vanishing entirely, 
ensuring that it remains large enough to update the early layers effectively. 

In a transformer with many layers, the use of residual connections ensures that 
the gradients can flow back through the entire network, allowing the model to learn 
effectively from the very first layer. 

Normalization Techniques Comparison 

Normalization techniques such as batch normalization and layer normalization serve 
similar purposes but operate differently and are suited to different types of networks. 
In the context of transformers, layer normalization is typically preferred due to the 
nature of the data and the architecture. 

Batch normalization normalizes the activations across a mini-batch of data. For 
an input . x within a batch, the normalized output is 

. μbatch = 1

m

m∑
i=1

xi , σ 2
batch = 1

m

m∑
i=1

(xi − μbatch)
2,

. x̂i = xi − μbatch√
σ 2
batch + ε

,

. BatchNorm(x)i = γ x̂i + β,

where .m is the size of the mini-batch.
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Layer normalization, as previously defined, normalizes across the features within 
each individual data point, rather than across the batch. 

Batch normalization is effective in convolutional networks and other architectures 
where batch-level statistics are meaningful. However, in sequence models like trans-
formers, where each input might have different statistical properties, layer normaliza-
tion is more effective because it normalizes each data point individually, maintaining 
consistency across varying input sequences. 

Both batch normalization and layer normalization reduce the variance of activa-
tions, which stabilizes the learning process. However, the variance reduction occurs 
at different levels (batch versus feature), influencing the choice of normalization 
technique based on the architecture. 

In transformers, where inputs can vary greatly in length and content, layer nor-
malization ensures that each token is treated consistently, regardless of the batch 
composition, leading to more stable and efficient training. 

4.2 Decoder Structure 

The decoder in the transformer architecture is designed to generate output sequences 
based on the encoded representations provided by the encoder. It is especially crucial 
in tasks such as machine translation, where the decoder must generate a sequence 
of words in the target language that corresponds to the sequence in the source lan-
guage. The decoder is composed of multiple layers, each containing a combination 
of masked multi-head attention, cross-attention, and feedforward networks. This 
section explores the composition of these layers, focusing on the masked multi-head 
attention mechanism, cross-attention, and their interaction with the encoder outputs 
(see Fig. 4.2). 

4.2.1 Layer Composition 

Each layer of the transformer decoder consists of three main sub-layers: masked 
multi-head attention, cross-attention, and a feedforward network. The masked multi-
head attention sub-layer allows the decoder to focus on previous positions in the 
output sequence, ensuring that future tokens are not considered during generation. 
The cross-attention sub-layer allows the decoder to attend to the encoder’s out-
puts, integrating information from the source sequence. Finally, the feedforward 
network applies non-linear transformations to the attention outputs, adding depth 
and complexity to the model’s representations.
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Fig. 4.2 Diagram of a 
transformer decoder, 
featuring masked multi-head 
self-attention and 
cross-attention layers, 
designed to process 
sequential data while 
integrating context from the 
encoder outputs 

Masked Multi-Head Attention 

The masked multi-head attention mechanism in the decoder is similar to the multi-
head attention mechanism in the encoder, with the key difference being the appli-
cation of a mask to prevent the model from attending to future tokens. This ensures 
that the decoder generates the output sequence one token at a time.
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Let .Y ∈ R
m×d represent the input to the decoder at a particular layer, where . m

is the length of the sequence generated so far and . d is the dimensionality of the 
embeddings. The masked multi-head attention mechanism computes attention in the 
following steps: 

1. Linear Transformations: The input .Y is linearly transformed into query, key, 
and value matrices for each attention head: 

. Qi = YWQ
i , Ki = YWK

i , Vi = YWV
i ,

where .WQ
i , .W

K
i , and .WV

i are learned weight matrices for the .i-th head. 
2. Masking Mechanism: A mask .M is applied to the attention scores to prevent 

the model from attending to future tokens. The attention score between tokens. i and 
. j is computed as 

. αi j =
exp

(
qik�

j√
dk

+ Mi j

)
∑m

j ′=1 exp

(
qik�

j ′√
dk

+ Mi j ′

) ,

where .Mi j is set to a large negative value (e.g., .−∞)  i  f  . j > i , effectively masking 
future positions. 

3. Weighted Sum of Values: The masked attention score.αi j is then used to compute 
the weighted sum of the values: 

. zi =
m∑
j=1

αi jv j .

4. Multi-Head Attention Output: The outputs from all heads are concatenated and 
linearly transformed: 

. Z = Concat(z1, z2, . . . , zh)WO ,

where .WO is a learned projection matrix. 

The masked multi-head attention mechanism ensures that each position . i in the 
output sequence depends only on the tokens at positions .≤ i . Formally, for any 
position . i , the output . zi is independent of the inputs .y j for all . j > i : 

. P(zi | y>i ) = P(zi ).

This property ensures that the decoder generates sequences in a causal manner, 
respecting the order of the sequence. 

In machine translation, when generating a sentence in the target language, the 
masked multi-head attention ensures that the model only considers the words that 
have been generated so far, avoiding any information about the future tokens that 
have not yet been generated.
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Masking Mechanism and Its Necessity 

The masking mechanism is essential for ensuring the correct autoregressive behavior 
in sequence generation tasks. Without masking, the model could access future tokens 
during training, leading to data leakage and incorrect learning of dependencies. 

The  mask  matr  ix .M is defined as 

. Mi j =
{
0 if i ≥ j,

−∞ if i < j,

where. i and. j index the positions in the sequence. This mask is added to the attention 
logits before applying the softmax function, ensuring that the attention scores for 
future positions are effectively zero. 

For an autoregressive model, the prediction.ŷi at position. i should only depend on 
the inputs .y1, y2, . . . , yi−1. The masking mechanism guarantees this by enforcing: 

. P(ŷi | y1, y2, . . . , yn) = P(ŷi | y1, y2, . . . , yi−1),

where. n is the total sequence length. This ensures that future tokens do not influence 
the prediction at position . i . 

When generating a sentence, the word at position .i + 1 should not influence the 
generation of the word at position. i . Masking enforces this by ensuring that the model 
does not consider future positions when computing the attention scores. 

Attention Computation 

Attention computation in the masked multi-head attention follows the same principles 
as in the encoder, with the key difference being the application of the mask. The 
attention scores.αi j are computed using the masked softmax, ensuring that only past 
and present tokens are considered for each position in the sequence. 

For each attention head, the attention score is calculated as 

. αi j =
exp

(
qik�

j√
dk

+ Mi j

)
∑m

j ′=1 exp

(
qik�

j ′√
dk

+ Mi j ′

) ,

where .Mi j ensures that the model does not attend to future tokens. 
The masking mechanism introduces sparsity into the attention matrix, where many 

attention scores are effectively zero due to the mask. Formally, for a sequence of 
length . m, the attention matrix . A satisfies
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. Sparsity(A) = 1

m2

m∑
i=1

m∑
j=i+1

1(αi j = 0) ≈ m(m − 1)

2m2
= 1

2
− 1

2m
.

As. m increases, the attention matrix becomes increasingly sparse, with half of the 
potential connections being masked. 

Example: In a sequence-to-sequence model for text generation, this sparsity 
ensures that the model focuses on the relevant past context, avoiding the risk of 
data leakage from future tokens. 

Cross-Attention 

Cross-attention, also known as encoder–decoder attention, allows the decoder to 
attend to the encoder’s output. This mechanism enables the decoder to incorporate 
information from the input sequence, effectively guiding the generation of the output 
sequence based on the encoded representations. 

Given the encoder output .H ∈ R
n×d , where. n is the length of the input sequence, 

the cross-attention mechanism in the decoder computes attention between the 
decoder’s queries .Qi and the encoder’s keys and values .K j and .V j : 

. αi j =
exp

(
qik�

j√
dk

)
∑n

j ′=1 exp

(
qik�

j ′√
dk

) ,

. zi =
n∑
j=1

αi jv j ,

where .Qi = YWQ
i , .K j = HWK

i , and .V j = HWV
i . 

Cross-attention facilitates the flow of information from the encoder to the decoder, 
ensuring that the output sequence is generated in alignment with the input sequence. 
Formally, the output . zi at position . i in the decoder is a weighted combination of the 
encoder outputs . H, allowing the decoder to incorporate information from the entire 
input sequence. 

Example: In machine translation, the cross-attention mechanism allows the 
decoder to focus on relevant parts of the source sentence when generating each word 
in the target sentence. For example, when generating a verb, the decoder might focus 
on the corresponding noun in the source sentence to ensure grammatical correctness.
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Interaction with Encoder Outputs 

The interaction between the decoder and encoder outputs is mediated through the 
cross-attention mechanism, where the encoder’s representations guide the decoder 
in generating the output sequence. This interaction ensures that the output sequence 
is semantically aligned with the input sequence. 

The decoder’s cross-attention sub-layer takes the encoder output .H and the 
decoder input . Y, computing the attention scores and resulting representations as 

. Zcross = CrossAttention(Q, K, V),

where .Q is derived from. Y, and .K and . V are derived from. H. 
Cross-attention ensures that the semantic content of the output sequence aligns 

with that of the input sequence. For any position . i in the output sequence, the 
cross-attention output .zi depends on the relevant encoder outputs, ensuring that the 
generated sequence is contextually appropriate. 

Example: In machine translation, cross-attention helps the model maintain align-
ment between the source and target languages, ensuring that words and phrases in the 
output sequence correspond accurately to their counterparts in the input sequence. 

Weight Sharing with Encoder 

In some transformer architectures, weights may be shared between the encoder and 
decoder, particularly in the attention mechanisms and feedforward networks. Weight 
sharing reduces the number of parameters in the model, leading to more efficient 
training and inference. 

Weight sharing between the encoder and decoder involves using the same 
weight matrices for corresponding layers. For example, if the encoder uses weight 
matrix .WQ for queries, the decoder might use the same matrix .WQ for its query 
transformations: 

. Qencoder = XWQ, Qdecoder = YWQ .

Let .Pshared and .Pseparate denote the number of parameters in models with shared 
and separate weights, respectively. Then 

. Pshared = 1

2
Pseparate.

Weight sharing reduces the parameter count by half, leading to more efficient use 
of computational resources. 

Example: In a transformer model designed for low-resource settings, weight shar-
ing between the encoder and decoder helps reduce the model size, making it more 
feasible to train on limited data or deploy on devices with constrained memory.
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4.2.2 Output Processing 

After the decoder generates the final representations through masked multi-head 
attention and cross-attention mechanisms, these representations must be processed 
to produce the final output tokens. This involves a series of mathematical operations 
that project the decoder’s output into a space corresponding to the vocabulary and 
convert these projections into probabilities that can be used to select the most likely 
next token in the sequence. 

Linear Transformation 

The decoder outputs a sequence of vectors .Z ∈ R
m×d , where .m is the sequence 

length and . d is the dimensionality of the model. To map these vectors into a space 
that corresponds to the vocabulary size, a linear transformation is applied. Let. Wout ∈
R

d×V be the weight matrix associated with this transformation, where .V is the size 
of the output vocabulary. The linear transformation is defined as 

. O = ZWout,

where.O ∈ R
m×V is the output matrix that contains the unnormalized logits for each 

position in the sequence. 
A linear transformation followed by a non-linear activation function can approxi-

mate any continuous function to arbitrary accuracy, given sufficient dimensionality of 
the transformation matrix. This theorem, based on the universal approximation theo-
rem, ensures that the linear transformation in the transformer is capable of expressing 
the necessary mappings from the decoder outputs to the output vocabulary space. 

Example: In a machine translation task, the linear transformation maps the rich 
contextual embeddings produced by the decoder into a space where each dimension 
corresponds to a word in the target-language vocabulary. This mapping is crucial for 
generating the final translated sentence. 

Projection to Output Vocabulary 

The output matrix .O obtained from the linear transformation contains logits for 
each position in the sequence across the entire vocabulary. Each row .oi ∈ R

V of . O
represents the unnormalized scores for each vocabulary word at position . i in the 
sequence. The next step is to project these logits into a probability distribution using 
the softmax function. 

The softmax function is applied to each row. oi to produce a probability distribution 
over the vocabulary:



200 4 Transformer Architecture: Encoder and Decoder

. P(yi = w | oi ) = exp(oiw)∑V
v=1 exp(oiv)

,

where .P(yi = w | oi ) is the probability of selecting word.w from the vocabulary as 
the output at position . i and .oiw is the logit corresponding to word . w. 

The softmax function maps the logits .oi into a probability distribution over the 
vocabulary. Formally, for any logits .oi ∈ R

V , 

. 

V∑
w=1

P(yi = w | oi ) = 1,

and .P(yi = w | oi ) ≥ 0 for all . w. This ensures that the output is a valid probability 
distribution. 

Example: If the logits for a particular position in the sequence strongly favor the 
word “cat,” the softmax function will assign a high probability to “cat” and lower 
probabilities to other words like “dog” or “fish.” 

Softmax Activation 

The softmax activation is essential for converting the logits into a probability dis-
tribution, which can then be used to make predictions about the next token in the 
sequence. 

The softmax function has several important properties that make it suitable for 
this task: 

1. Differentiability: The softmax function is smooth and differentiable, which is 
crucial for gradient-based optimization methods. 

2. Exponential Sensitivity: The use of the exponential function ensures that large 
differences in logits lead to large differences in probabilities, making the model 
sensitive to differences in the unnormalized scores. 

Let .pi = softmax(oi ). The gradient of the softmax function with respect to the 
logits is given by 

. 
∂piw
∂oiv

= piw(δwv − piv),

where .δwv is the Kronecker delta. This gradient is used during backpropagation to 
update the weights in the linear transformation matrix. 

Example: In a transformer model, during training, the softmax activation helps 
adjust the logits so that the probability of the correct word in the sequence is max-
imized. This is done by minimizing the cross-entropy loss between the predicted 
probabilities and the true one-hot encoded vectors of the target words.
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Probability Distribution Over Vocabulary 

The output of the softmax function is a probability distribution over the vocabu-
lary, from which the model selects the next word in the sequence. This probability 
distribution reflects the model’s confidence in each possible word given the context 
provided by the previous words and the encoder’s output. 

For each position. i in the sequence, the probability distribution over the vocabulary 
is given by 

. pi = softmax(oi ),

where.pi is a vector of probabilities for each word in the vocabulary. The model can 
then select the word with the highest probability or sample from the distribution. 

The entropy .H of the probability distribution .pi is given by 

. H(pi ) = −
V∑

w=1

P(yi = w | oi ) log P(yi = w | oi ).

High entropy indicates a more uniform distribution (more uncertainty in the pre-
diction), while low entropy indicates a peaked distribution (higher confidence in a 
specific word). 

Example: In a language generation task, if the model is very confident about the 
next word, the entropy of the distribution will be low, indicating that most of the 
probability mass is concentrated on a single word. 

Temperature Scaling 

Temperature scaling is a technique used to adjust the sharpness of the probability 
distribution produced by the softmax function. By controlling the temperature, one 
can make the model’s predictions more or less confident, depending on the task’s 
requirements. 

Given the logits. oi , temperature scaling modifies the softmax function as follows: 

. P(yi = w | oi , T ) = exp(oiw/T )∑V
v=1 exp(oiv/T )

,

where . T is the temperature parameter. When .T = 1, the distribution is the same as 
the standard softmax. When.T > 1, the distribution becomes softer (more uniform), 
and when .T < 1, the distribution becomes sharper (more peaked). 

Let .H(T ) be the entropy of the softmax distribution with temperature . T . Then 

.
dH(T )

dT
> 0,
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indicating that increasing the temperature. T increases the entropy of the distribution, 
making the model’s predictions more uncertain. 

Example: In text generation, a higher temperature might be used to encour-
age more diversity in the generated text, leading to more creative outputs, while a 
lower temperature might be used in tasks requiring more deterministic and accurate 
predictions. 

4.3 Mathematical Analysis 

The interaction between the encoder and decoder in a transformer model is fun-
damental to its success in sequence-to-sequence tasks such as machine translation, 
summarization, and more. These interactions are mediated by the attention mecha-
nisms, which allow the decoder to effectively utilize the information encoded by the 
encoder. This section analyzes the mathematical foundations of these interactions, 
focusing on the flow of information between the encoder and decoder, the role of the 
attention mechanism, and the impact of layer depth on these interactions. 

4.3.1 Encoder–Decoder Interactions 

The relationship between the encoder and decoder in a transformer model is char-
acterized by a bidirectional flow of information, primarily mediated through the 
cross-attention mechanism. Understanding this interaction is crucial for appreciat-
ing how transformers can generate coherent and contextually appropriate outputs 
based on the input sequence. 

Information Flow Between Encoder and Decoder 

The information flow between the encoder and decoder is governed by the cross-
attention mechanism in the decoder. For a given position . i in the decoder sequence, 
the decoder’s query .qi interacts with the keys .K and values .V produced by the 
encoder: 

. K = HWK , V = HWV ,

where .H represents the output of the encoder. The attention score .αi j between the 
decoder’s query .qi and the encoder’s key .k j is given by 

.αi j =
exp

(
qik�

j√
dk

)
∑n

j ′=1 exp

(
qik�

j ′√
dk

) ,
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where.dk is the dimensionality of the keys. The information from the encoder is then 
aggregated as a weighted sum of the encoder’s values: 

. zi =
n∑
j=1

αi jv j .

This aggregation allows the decoder to utilize information from the entire input 
sequence while generating each token in the output sequence. 

The cross-attention mechanism preserves the essential information from the 
encoder, allowing it to influence the decoder’s output at each position. Formally, 
the aggregated output .zi captures the relevant information from the encoder’s out-
put, ensuring that the decoder’s generation process is contextually grounded in the 
input sequence. 

Example: In machine translation, when the decoder is generating the word 
“jumps” in the sentence “The cat jumps over the dog,” it might focus on the cor-
responding word “saut” in the French input, ensuring that the translation remains 
accurate and contextually appropriate. 

Attention Mechanism in Encoder–Decoder Interactions 

The attention mechanism plays a central role in how the encoder and decoder interact. 
It allows the decoder to selectively focus on different parts of the input sequence based 
on the current context in the output sequence. 

The attention mechanism in the encoder–decoder interaction can be described as 
a mapping from the decoder’s query .qi to a weighted combination of the encoder’s 
values. v j , where the weights are determined by the similarity between the query and 
the encoder’s keys: 

. zi =
n∑
j=1

exp
(

qik�
j√

dk

)
∑n

j ′=1 exp

(
qik�

j ′√
dk

)v j .

The similarity measure, typically the dot product, captures the alignment between 
the current decoder state and the relevant parts of the encoder’s output. 

The attention mechanism can be viewed as a content-based addressing system, 
where the query .qi retrieves the most relevant content from the encoder’s output. 
This ensures that the decoder’s focus is dynamically adjusted based on the evolving 
context during sequence generation. 

Example: In a summarization task, the attention mechanism allows the decoder 
to focus on the key points in the input text, ensuring that the summary captures the 
most important information.
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Impact of Layer Depth on Interactions 

The depth of the encoder and decoder layers has a significant impact on the quality 
and richness of the interactions between the encoder and decoder. Deeper layers 
allow the model to capture more complex patterns and hierarchical structures in the 
data. 

Let.Le and.Ld denote the number of layers in the encoder and decoder, respectively. 
The output of the .l-th layer in the encoder is given by 

. H(l) = LayerNorm
(
H(l−1) + FFN

(
MultiHeadAttention

(
H(l−1)

)))
,

where.H(0) = X is the input sequence and.FFN denotes the feedforward network. The 
depth .Le determines the complexity of the representations learned by the encoder. 

In the decoder, the output at layer . l is similarly defined as 

. Y(l) = LayerNorm
(
Y(l−1) + FFN

(
MultiHeadAttention

(
Y(l−1), H(Le)

)))
,

where the cross-attention mechanism allows the decoder to incorporate the encoded 
information from the deepest layer of the encoder. 

The expressive power of the transformer model increases with the depth of the 
encoder and decoder layers. Formally, for sufficiently large.Le and.Ld , the model can 
approximate any continuous sequence-to-sequence mapping with arbitrary precision, 
assuming sufficient model capacity (number of attention heads, dimensionality, etc.). 

Example: In a complex translation task, a deeper encoder may capture nuanced 
linguistic features from the source text, which are then leveraged by a deep decoder 
to generate more accurate and fluent translations. 

4.3.2 Training Dynamics 

Understanding the training dynamics of transformers requires a deep dive into how 
loss functions are formulated, how optimization algorithms are applied to minimize 
these losses, and how regularization techniques are used to prevent overfitting. These 
components are essential to achieving stable training and convergence in large-scale 
models. 

Loss Functions and Optimization 

The loss function quantifies the difference between the model’s predictions and 
the true labels, guiding the optimization process during training. In sequence-to-
sequence tasks, cross-entropy loss is commonly used, particularly when the goal is 
to predict a probability distribution over a discrete set of classes, such as words in a 
vocabulary.
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Let.y = (y1, y2, . . . , ym) be the true sequence of labels, and. ŷ = (ŷ1, ŷ2, . . . , ŷm)

be the predicted sequence generated by the model. The cross-entropy loss. L is defined 
as 

. L(y, ŷ) = −
m∑
i=1

log P(yi | ŷ<i ),

where .P(yi | ŷ<i ) is the probability assigned by the model to the correct token . yi
given the previous predicted tokens .ŷ<i . 

The minimization of the cross-entropy loss is equivalent to maximizing the like-
lihood of the correct sequence under the model’s distribution. Formally, minimizing 
.L(y, ŷ) corresponds to maximizing: 

. 

m∏
i=1

P(yi | ŷ<i ).

This ensures that the model learns to assign high probabilities to the correct sequence 
during training. 

Example: In machine translation, the cross-entropy loss measures how well the 
predicted translation aligns with the true translation, guiding the model to improve 
its predictions over successive iterations. 

Cross-Entropy Loss 

The cross-entropy loss is particularly well suited for tasks where the output is a 
probability distribution over a discrete set of classes, such as in language modeling 
or translation. 

Given a predicted probability distribution . p̂i = P(ŷi | ŷ<i ) and the true one-hot 
encoded distribution . pi , the cross-entropy loss for a single token is 

. Li = −
V∑

w=1

pi (w) log p̂i (w).

For a sequence, the total cross-entropy loss is the sum over all tokens: 

. L(y, ŷ) = −
m∑
i=1

V∑
w=1

pi (w) log p̂i (w),

where .V is the size of the vocabulary. 
The cross-entropy loss function is convex with respect to the predicted probabil-

ities . p̂i . This convexity ensures that optimization algorithms like gradient descent 
can efficiently find a global minimum in the loss landscape.



206 4 Transformer Architecture: Encoder and Decoder

Example: In a transformer-based language model, the cross-entropy loss is mini-
mized by adjusting the model parameters so that the predicted probability distribu-
tions over the vocabulary closely match the true distributions, leading to accurate 
text generation. 

Teacher Forcing in Training 

Teacher forcing is a technique used during training where the true previous token is 
used as input to the decoder, rather than the model’s own prediction. This helps the 
model converge faster by providing the correct context at each step of the sequence 
generation. 

During training with teacher forcing, the input to the decoder at each time step . i
is the true token .yi−1 from the training data, rather than the predicted token .ŷi−1: 

. ŷi = f (yi−1, hi ),

where .hi is the hidden state at time step . i . 
Teacher forcing reduces the exposure bias that can occur when the model is only 

trained on its own predictions. By providing the correct context, teacher forcing 
ensures that the model learns to predict the next token given the true previous tokens, 
leading to faster convergence during training. 

Example: In a sequence generation task, such as summarization, teacher forcing 
helps the model learn the correct structure of summaries by ensuring that each part 
of the output sequence is conditioned on the correct input. 

Gradient Descent and Backpropagation 

Gradient descent is the primary optimization method used to minimize the loss 
function in neural networks, including transformers. Backpropagation is the algo-
rithm used to compute the gradients of the loss function with respect to the model 
parameters. 

The gradient of the loss function . L with respect to a parameter . θ is given by 

. ∇θL = ∂L
∂θ

.

The parameter update in gradient descent is then 

. θ ← θ − η∇θL,

where . η is the learning rate.
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Under certain conditions, such as a sufficiently small learning rate and a convex 
loss function, gradient descent is guaranteed to converge to a local or global minimum 
of the loss function. 

In a transformer model, gradient descent is used to update the parameters of the 
attention mechanisms, feedforward networks, and embeddings, gradually reducing 
the cross-entropy loss and improving the model’s performance on the training data. 

Training Stability and Convergence 

Training stability refers to the ability of the model to maintain consistent learn-
ing progress without encountering issues such as exploding or vanishing gradients. 
Convergence refers to the model’s ability to reach a minimum in the loss function. 

Training stability can be affected by the choice of learning rate, initialization of 
model parameters, and the architecture of the model. For instance, residual connec-
tions and layer normalization in transformers help stabilize training by ensuring that 
gradients do not vanish or explode. 

Gradient clipping is a technique used to maintain training stability by limiting the 
magnitude of the gradients: 

. ∇θL ← ∇θL
max

(
1, ‖∇θL‖

threshold

) .

This ensures that the updates to the parameters remain within a reasonable range, 
preventing instability. 

In training deep transformer models, gradient clipping is often employed to pre-
vent large updates that could destabilize the training process, especially in early 
stages when the model parameters are far from their optimal values. 

Regularization Techniques 

Regularization techniques are used to prevent overfitting, ensuring that the model 
generalizes well to unseen data. In transformers, common regularization methods 
include dropout and label smoothing. 

Dropout 

Dropout ([ 2]) is a regularization technique where, during training, a random subset 
of activations is set to zero, preventing the model from becoming too reliant on any 
single neuron. Mathematically, for a layer with activations . h, dropout is applied as 

.hdropout = h � r,
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where. r is a binary mask vector with each element drawn from a Bernoulli distribution 
with parameter . p, and .� denotes element-wise multiplication. 

Dropout acts as a form of ensemble learning, where multiple sub-networks are 
trained simultaneously. This prevents overfitting and improves the generalization of 
the model. 

In transformer models, dropout is often applied after the attention and feedforward 
layers to prevent overfitting, particularly in large models trained on limited data. 

Label Smoothing 

Label smoothing ([ 3]) is a technique that softens the target labels during training, 
replacing the one-hot encoded labels with a distribution that assigns a small probabil-
ity to all classes. For a target label. yi , label smoothing modifies the target distribution 
as 

. p′
i (w) = (1 − ε) · pi (w) + ε

V
,

where . ε is the smoothing parameter and .V is the vocabulary size. 
Label smoothing reduces the confidence of the model in its predictions, which 

acts as a regularizer and prevents the model from becoming overly confident on 
the training data. This can improve the generalization performance of the model on 
unseen data. 

In translation tasks, label smoothing helps prevent the model from becoming too 
certain about specific translations, which can lead to better performance on rare 
words and out-of-vocabulary words. 

4.3.3 Hyperparameter Tuning 

Hyperparameters are parameters set before training begins, and they control various 
aspects of the learning process. Unlike model parameters, which are learned during 
training, hyperparameters must be carefully selected through experimentation, as 
they can greatly influence the effectiveness of the training process and the resulting 
model’s performance. 

Impact of Hyperparameters on Performance 

The choice of hyperparameters such as learning rate, batch size, and the number of 
training epochs can drastically affect the model’s ability to converge to a good solution 
and generalize well to unseen data. Understanding the mathematical relationship 
between these hyperparameters and the training process is essential for effective 
model tuning.
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Let .L(θ; λ) represent the loss function for a model with parameters . θ and hyper-
parameters . λ. The goal of hyperparameter tuning is to find the optimal set of 
hyperparameters .λ∗ that minimizes the expected loss on a validation set .Dval: 

. λ∗ = argminλEDval[L(θ; λ)].

This optimization problem is often solved through methods such as grid search, 
random search, or more sophisticated techniques like Bayesian optimization. 

The sensitivity of the loss function to changes in hyperparameters can be quantified 
by the gradient of the loss with respect to the hyperparameters: 

. 
∂L(θ; λ)

∂λ
.

Large gradients indicate high sensitivity, meaning small changes in the hyperpa-
rameter values can lead to significant changes in model performance. 

In a transformer model, a small learning rate might lead to slow convergence, 
while a large learning rate might cause the model to overshoot minima in the loss 
landscape, leading to instability. The optimal learning rate balances these effects, 
ensuring stable and efficient convergence. 

Learning Rate Schedules 

The learning rate is one of the most crucial hyperparameters, controlling the step 
size during gradient descent. Learning rate schedules adjust the learning rate dur-
ing training to improve convergence and prevent the model from getting stuck in 
suboptimal minima. 

A learning rate schedule .η(t) is a function that defines how the learning rate . η
changes over time . t (or training epochs). Common learning rate schedules include 

1. Step Decay: The learning rate is reduced by a factor . γ after every . s epochs: 

. η(t) = η0 · γ �t/s�,

where .η0 is the initial learning rate. 
2. Exponential Decay: The learning rate decays exponentially over time: 

. η(t) = η0 · exp(−λt),

where . λ is the decay rate.
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3. Cosine Annealing: The learning rate follows a cosine function, reducing 
gradually to zero: 

. η(t) = η0 · 1
2

(
1 + cos

(
π t

T

))
,

where . T is the total number of training epochs. 

Under certain conditions, such as a sufficiently small initial learning rate and 
appropriate decay, learning rate schedules can ensure that gradient descent converges 
to a local or global minimum of the loss function. The convergence is often faster 
and more stable with well-chosen learning rate schedules. 

In transformer models, a common practice is to use a learning rate warm-up 
followed by a decay schedule. This approach starts with a very low learning rate, 
gradually increasing it over the first few epochs (warm-up), and then decays the 
learning rate as training progresses, allowing the model to settle into a good minimum. 

Batch Size and Training Duration 

The batch size determines the number of training examples used to compute the 
gradient in each iteration. It influences both the stability of the training process and 
the time required to complete an epoch. Training duration, often measured in terms 
of the number of epochs, dictates how long the model is trained and can affect its 
ability to generalize. 

Let. B be the batch size,.N be the total number of training examples, and. E be the 
number of epochs. The number of iterations per epoch is .I = �N/B�, and the total 
number of updates to the model parameters during training is .U = I × E . 

The variance of the gradient estimate decreases with increasing batch size. 
Specifically, if .∇L(θ;B) is the gradient computed on a batch . B, then 

. Var(∇L(θ;B)) ∝ 1

B
.

This means that larger batch sizes lead to more stable gradient estimates, but they 
also require more computational resources. 

In transformer training, larger batch sizes can help stabilize training, especially 
when using a high learning rate. However, very large batch sizes may require adjust-
ments to the learning rate to avoid diminishing returns on training speed and model 
performance. 

Training duration .E affects the model’s ability to generalize. Too few epochs 
may result in underfitting, where the model fails to capture the underlying patterns 
in the data. Too many epochs may lead to overfitting, where the model becomes 
too specialized to the training data and performs poorly on unseen data. The opti-
mal training duration balances these effects, typically determined through validation 
performance.
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During transformer training, monitoring validation loss and other metrics helps 
determine when to stop training to avoid overfitting. Early stopping is a common 
technique that halts training once the validation performance ceases to improve. 

4.4 Advanced Topics 

As the original transformer architecture has become a foundational model in deep 
learning, various enhancements and variants have been proposed to address its limita-
tions and extend its capabilities. These transformer variants, such as Transformer-XL, 
Memory-Enhanced Transformers, and Universal Transformers, introduce new mech-
anisms that enable better handling of long-term dependencies, memory retention, and 
dynamic computation. This section explores these topics, providing a mathematical 
foundation for each variant and discussing their implications for model performance 
and flexibility. 

4.4.1 Transformer Variants 

Transformer variants build on the original architecture by introducing novel com-
ponents or modifications aimed at addressing specific challenges, such as the fixed-
length context window, computational efficiency, and the ability to handle more 
complex tasks. Each variant introduces new ideas that push the boundaries of what 
transformers can achieve. 

Transformer-XL 

Transformer-XL ([ 1]) is designed to overcome the fixed-length context limitation of 
the original transformer by introducing a mechanism to capture long-range depen-
dencies. It does so by segmenting the input sequence and introducing a recurrence 
mechanism that enables the model to retain information across segments. 

In Transformer-XL, the input sequence is divided into segments.{x1, x2, . . . , xT }, 
where each segment .xt is processed by the transformer model. The key innovation 
is the introduction of a hidden state recurrence mechanism that allows information 
to flow from one segment to the next: 

. hl
t = Attention

(
ql
t , [kl

t ; kl
t−1], [vl

t ; vl
t−1]

)
,

where.hl
t is the hidden state at layer. l for segment. t , and.[kl

t ; kl
t−1] denotes the concate-

nation of keys from the current and previous segments. This recurrence mechanism 
enables the model to maintain a memory of past segments, effectively increasing the 
context length without requiring larger computational resources.
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Transformer-XL’s recurrence mechanism allows the model to capture dependen-
cies beyond the typical context window. Formally, let .LXL(hl

t , hl
t−1) denote the loss 

function that includes the recurrent hidden states. The memory retention property 
ensures that 

. 
∂LXL

∂hl
t

≈ ∂LXL

∂hl
t−1

,

indicating that the gradient information is preserved across segments, allowing the 
model to effectively propagate information over long sequences. 

In language modeling, Transformer-XL can model dependencies over longer text 
sequences, such as paragraphs or entire documents, without being constrained by the 
fixed context window of traditional transformers. This results in more coherent text 
generation and better understanding of long-range dependencies. 

Memory-Enhanced Transformers 

Memory-enhanced transformers extend the transformer architecture by incorporating 
external memory modules, allowing the model to store and retrieve information 
across long sequences or even entire datasets. These models are particularly useful 
in tasks requiring long-term memory, such as question answering or summarization. 

Memory-enhanced transformers introduce an external memory matrix .M that is 
dynamically updated during the learning process. The memory matrix . M ∈ R

N×d

can store.N memory slots, each of dimension. d. The attention mechanism is modified 
to incorporate this external memory: 

. hl
t = Attention

(
ql
t , [kl

t ; M], [vl
t ; M]) ,

where .M serves as an additional source of keys and values, enabling the model to 
retrieve relevant information from memory. 

The inclusion of external memory enhances the model’s ability to store and retrieve 
information across different contexts. Let .LMEM(hl

t , M) represent the loss function 
with the memory module. The memory augmentation ensures that 

. 
∂LMEM

∂M
�= 0,

indicating that the memory matrix actively contributes to the learning process by 
influencing the gradients, thereby allowing the model to refine its memory over time. 

Example: In tasks like open-domain question answering, memory-enhanced trans-
formers can store relevant facts and retrieve them when needed, leading to more 
accurate and contextually aware answers. The external memory allows the model 
to “remember” information from previous questions, improving performance over 
time.
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Universal Transformers 

Universal transformers introduce a dynamic computational mechanism that itera-
tively refines representations at each position in the sequence. This is achieved by 
applying the same set of transformer layers multiple times, akin to a recurrent neural 
network, allowing the model to adaptively learn complex dependencies. 

In a universal transformer, the input sequence is processed by a stack of trans-
former layers that are repeatedly applied to refine the hidden states. Let.h(0)

t = Et be 
the initial embedding of the token at position. t . The hidden state is updated iteratively: 

. h(k+1)
t = TransformerLayer

(
h(k)
t , H(k)

)
,

where . k denotes the iteration index and .H(k) represents the set of hidden states for 
all positions at iteration . k. The iterative process continues for a fixed number of 
iterations .K or until convergence. 

The iterative refinement process in universal transformers allows the model 
to approximate any continuous sequence transformation with arbitrary precision, 
given sufficient iterations. Formally, let .T be the set of sequence transformations 
expressible by a universal transformer with .K iterations. Then 

. T (K ) ⊆ T (K + 1),

indicating that increasing the number of iterations.K enhances the model’s expressive 
power. 

In tasks requiring complex reasoning, such as multi-hop question answering or 
logic-based tasks, universal transformers can iteratively refine their understand-
ing of the input, leading to more accurate and nuanced predictions. The iterative 
nature allows the model to process information in a manner that mimics human-like 
reasoning. 

As transformer models have grown in size and complexity, addressing issues of 
scalability and efficiency has become crucial. This section delves into the mathe-
matical underpinnings of various techniques designed to enhance the scalability and 
efficiency of transformers, including efficient attention mechanisms, model paral-
lelism, and strategies for training large-scale transformers. These approaches are 
essential for deploying transformers in large-scale applications while maintaining 
computational feasibility.
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4.4.2 Scalability and Efficiency Improvements 

The scalability of transformers is fundamentally linked to the efficiency of their core 
components, particularly the attention mechanism, and the ability to parallelize com-
putations across large models. Efficient attention mechanisms reduce the computa-
tional and memory overhead, while model parallelism and optimized training strate-
gies enable the handling of large-scale models that are essential for state-of-the-art 
performance. 

Efficient Attention Mechanisms 

The attention mechanism in transformers, while powerful, is computationally expen-
sive, particularly in terms of memory and time complexity. The standard attention 
mechanism has a quadratic complexity in relation to the sequence length, .O(n2), 
where . n is the sequence length. Efficient attention mechanisms have been proposed 
to address this issue, reducing the complexity and making transformers more scalable. 

The standard self-attention mechanism computes attention scores between all 
pairs of tokens in the sequence. For an input sequence .X ∈ R

n×d , the attention 
mechanism is computed as 

. Attention(Q, K, V) = softmax

(
QK�
√
dk

)
V,

where.Q = XWQ ,.K = XWK , and.V = XWV are the query, key, and value matrices, 
respectively. 

The computational complexity of the standard attention mechanism is .O(n2d), 
where . n is the sequence length and . d is the dimensionality of the model. This 
quadratic complexity poses challenges for processing long sequences. 

Several efficient attention mechanisms have been proposed to reduce this 
complexity: 

1. Sparse attention restricts the attention computation to a subset of tokens, reduc-
ing the complexity to .O(n · k · d), where . k is the number of tokens attended to by 
each token. This sparsity can be achieved through fixed patterns or learned patterns. 

Let .Si ⊆ {1, 2, . . . , n} represent the indices of tokens that token. i attends to. The 
sparse attention is computed as 

. SparseAttention(Q, K, V)i =
∑
j∈Si

αi jv j ,

where .αi j are the attention weights restricted to the sparse subset. 
2. Low-rank factorization approximates the attention matrix by decomposing it 

into the product of lower-rank matrices, reducing the complexity to .O(n · r · d), 
where . r is the rank of the approximation.
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The attention matrix . A can be factorized as 

. A ≈ BC,

where .B ∈ R
n×r and .C ∈ R

r×n . The low-rank approximation reduces the computa-
tion required for the attention operation. 

3. Linearized attention mechanisms approximate the softmax function with a 
linear function, reducing the complexity to .O(n · d). 

The linearized attention can be expressed as 

. LinearAttention(Q, K, V) = φ(Q)
(
φ(K)�V

)
,

where . φ is a feature map that approximates the softmax function. 

Linearized attention mechanisms reduce the complexity of the attention operation 
to linear time .O(n · d), making them suitable for very long sequences. 

In large-scale NLP tasks, efficient attention mechanisms allow transformers to 
process entire documents or long texts without running into memory or computational 
constraints, enabling more effective and scalable models. 

Model Parallelism 

Model parallelism is a strategy used to distribute the computation of large models 
across multiple devices or processors. This approach is essential for training very 
large transformer models, where the model parameters and activations may exceed 
the memory capacity of a single device. 

Let .W ∈ R
din×dout be a large weight matrix in the model. In model parallelism, 

this matrix is partitioned across multiple devices: 

. W = [W1, W2, . . . , Wp],

where . p is the number of devices and .Wi is the portion of the weight matrix on 
device . i . The input . x is similarly partitioned, and the output is computed as 

. y =
p∑

i=1

xiWi .

Model parallelism can lead to significant speedup in training, particularly when 
the model size is much larger than the capacity of a single device. The overall speedup 
. S is given by 

.S ≈ 1

maxi
(
ComputationTimei + CommunicationTimei

) ,
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where .ComputationTimei and .CommunicationTimei are the computation and 
communication times on device . i . 

In training models like GPT-3, which have hundreds of billions of parameters, 
model parallelism is essential to distribute the computations across thousands of 
GPUs, making the training process feasible. 

Training Large-Scale Transformers 

Training large-scale transformers requires not only efficient algorithms and hard-
ware but also careful management of hyperparameters, data pipelines, and optimiza-
tion strategies. Techniques like gradient accumulation, mixed-precision training, and 
distributed data parallelism are commonly used. 

Consider a large-scale transformer with .N layers, each with . d dimensionality, 
trained on a dataset of size . M . The training process involves minimizing a loss 
function .L(θ) with respect to the model parameters . θ : 

. θ∗ = argminθL(θ).

Due to the large size of the model, the following techniques are often employed: 
1. Gradients are accumulated over multiple mini-batches before performing 

a parameter update, reducing memory usage and enabling training with smaller 
batch sizes. Let .Bi be the .i-th mini-batch and .gi = ∇θL(Bi ) be the gradient. The 
accumulated gradient over . k mini-batches is 

. gacc =
k∑

i=1

gi .

2. Mixed-precision training involves using lower precision arithmetic (e.g., FP16) 
for computations while maintaining high precision (e.g., FP32) for certain critical 
operations, reducing memory usage and increasing computational efficiency. Mixed-
precision training reduces memory bandwidth requirements and can lead to faster 
training times, with the theoretical speedup being proportional to the reduction in 
memory transfer time: 

. Smixed = MemoryTransferTimeFP32
MemoryTransferTimeFP16

,

while maintaining comparable model accuracy. 
3. Data parallelism distributes the training data across multiple devices, with each 

device independently computing gradients on its subset of data. The gradients are 
then averaged across devices. Let .Di be the subset of data on device . i . The gradient 
on device . i is .gi = ∇θL(Di ). The global gradient is computed as
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. gglobal = 1

p

p∑
i=1

gi ,

where . p is the number of devices. 
When training models like BERT or GPT on large datasets, mixed-precision train-

ing and distributed data parallelism are often used in combination to maximize effi-
ciency and scalability, enabling the training of models with billions of parameters in 
a reasonable timeframe. 
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Chapter 5 
Transformers in Natural Language 
Processing 

5.1 Language Modeling 

Language modeling is one of the foundational tasks in NLP and is crucial for various 
downstream tasks such as machine translation, summarization, and dialog systems. 
Transformers, with their self-attention mechanisms and ability to model complex 
dependencies, have become the standard architecture for state-of-the-art language 
models. This section explores the mathematical foundations of language modeling 
using transformers, focusing on sequence-to-sequence models, the encoder–decoder 
framework, conditional probability and likelihood, and pre-training objectives. 

5.1.1 Mathematical Formulation 

Language modeling involves predicting the probability distribution of the next word 
in a sequence, given the previous words. This can be formalized mathematically using 
the principles of probability and information theory, combined with the structural 
components of transformers. 

Sequence-to-Sequence Models 

Sequence-to-sequence (Seq2Seq) models are a class of models designed to transform 
one sequence into another, making them ideal for tasks like translation, where the 
input is a sequence in one language, and the output is a sequence in another language. 
In transformers, the Seq2Seq model is typically implemented using an encoder– 
decoder architecture. 
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Let .x = (x1, x2, . . . , xn) be the input sequence and .y = (y1, y2, . . . , ym) be the 
output sequence. The goal of a Seq2Seq model is to learn a mapping from. x to . y by 
maximizing the conditional probability: 

. P(y | x; θ) =
m∏

i=1

P(yi | y1, . . . , yi−1, x; θ),

where . θ represents the parameters of the model. 
The training of a Seq2Seq model can be viewed as a maximum likelihood esti-

mation (MLE) problem, where the objective is to maximize the likelihood of the 
observed sequence pairs .(x, y): 

. θ∗ = argmax
θ

∑

(x,y)∈D
log P(y | x; θ),

where .D is the training dataset. 
In machine translation, a Seq2Seq transformer model is trained to maximize the 

likelihood of the correct translation. y given the source sentence. x, effectively learning 
to translate between languages. 

Encoder–Decoder Framework 

The encoder–decoder framework is a fundamental structure in Seq2Seq models, 
particularly in transformers. The encoder processes the input sequence and generates 
a set of contextualized representations, which the decoder then uses to generate the 
output sequence (see Fig. 5.1). 

Let .H = (h1, h2, . . . , hn) represent the output of the encoder, where .hi is the 
hidden state corresponding to the input token . xi . The decoder generates the output 
sequence . y by computing 

. yi = Decoder(y<i , H),

where .y<i = (y1, y2, . . . , yi−1) represents the previously generated tokens. 
The encoder–decoder framework ensures that the information from the entire input 

sequence. x is preserved and utilized in generating each token of the output sequence 
. y. Formally, the hidden states .H should capture sufficient information about . x such 
that 

. Mutual Information(Hi ; x) ≥ Mutual Information(yi ; x).

Example: In a translation task, the encoder processes the entire source sentence 
to produce contextual embeddings, which the decoder uses to generate the target 
sentence, ensuring that the output is contextually aligned with the input.
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Fig. 5.1 Diagram of the transformer encoder–decoder architecture, illustrating the flow of informa-
tion from the encoder’s context-aware representations to the decoder’s sequence generation process 
through cross-attention mechanisms
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Conditional Probability and Likelihood 

In the context of language modeling, conditional probability plays a crucial role in 
defining how likely a particular sequence of words is, given the preceding words. The 
likelihood of a sequence is computed as the product of these conditional probabilities. 

Given a sequence .y = (y1, y2, . . . , ym), the conditional probability of the 
sequence, given the previous tokens, is defined as 

. P(y | x; θ) =
m∏

i=1

P(yi | y1, . . . , yi−1, x; θ).

The log-likelihood .L(θ) of the sequence under the model is 

. L(θ) =
m∑

i=1

log P(yi | y1, . . . , yi−1, x; θ).

The chain rule of probability allows the decomposition of the joint probability of 
a sequence into a product of conditional probabilities: 

. P(y | x) = P(y1 | x) · P(y2 | y1, x) · . . . · P(ym | y1, y2, . . . , ym−1, x),

which is the foundation for autoregressive models like transformers. 
Example: In language modeling, the transformer uses the chain rule to predict 

the next word in a sequence, given the previous words. This approach enables the 
model to generate coherent text by leveraging the conditional dependencies between 
words. 

Pre-training Objectives 

Pre-training objectives are critical in modern language models, as they enable the 
model to learn rich representations from large amounts of text data before being fine-
tuned on specific tasks. Common pre-training objectives include masked language 
modeling and autoregressive language modeling. 

1. Masked Language Modeling (MLM): In MLM, a subset of tokens in the input 
sequence is masked, and the model is trained to predict these masked tokens. Let 
.y = (y1, y2, . . . , ym) be the sequence and let .ymask be the masked sequence. The 
objective is to maximize 

. LMLM(θ) = Ey,ymask

[
∑

i∈mask

log P(yi | ymask; θ)

]
,

where . i indexes the masked positions.
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2. Autoregressive Language Modeling (ALM): In ALM, the model is trained to 
predict the next token in the sequence, given the previous tokens. The objective is to 
maximize 

. LALM(θ) = Ey

[
m∑

i=1

log P(yi | y1, . . . , yi−1; θ)

]
.

Pre-training with objectives like MLM and ALM enables the model to learn 
generalizable features that can be transferred to a wide range of downstream tasks. 
Formally, the pre-training phase aims to learn a representation .H such that 

. H = argmax
H

Lpretrain(θ),

where .Lpretrain is the loss function for the pre-training objective. The learned 
representations .H are then fine-tuned on task-specific data. 

Models like BERT ([ 2]) and GPT ([ 3]) use MLM and ALM, respectively, as 
their pre-training objectives. BERT, trained with MLM, excels at understanding the 
context within a sentence, while GPT, trained with ALM, is particularly effective at 
generating coherent text. 

Masked Language Modeling 

MLM is a pre-training objective where a subset of tokens in a sequence is randomly 
masked, and the model is tasked with predicting these masked tokens based on the 
context provided by the unmasked tokens. Let .x = (x1, x2, . . . , xn) be the input 
sequence and let .m = (m1,m2, . . . ,mn) be a binary mask, where .mi = 1 indicates 
that the token .xi is masked. 

The objective of MLM is to maximize the log-likelihood of the masked tokens 
given their surrounding context: 

. LMLM(θ) = Ex,m

[
n∑

i=1

mi log P(xi | x\i ; θ)

]
,

where .x\i denotes the sequence . x with the .i-th token removed and . θ represents the 
model parameters. 

MLM forces the model to learn rich contextual representations by making pre-
dictions based on incomplete information. Formally, the training process encourages 
the model to maximize the mutual information between the masked token.xi and the 
surrounding context .x\i : 

.Mutual Information(xi ; x\i ) ≥ Mutual Information(xi ; x).
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This ensures that the model captures dependencies that go beyond simple adjacent 
tokens, learning deeper contextual relationships. 

Example: In BERT, MLM is used as a core pre-training objective. Tokens are 
randomly masked, and the model learns to predict these tokens based on the context 
provided by the other tokens in the sentence, enabling the model to develop a deep 
understanding of language structure. 

Next Sentence Prediction (NSP) 

NSP is a pre-training task designed to help the model understand the relationship 
between pairs of sentences. Given two sentences .s1 and. s2, the model is tasked with 
predicting whether .s2 logically follows . s1. 

The objective is to maximize the log-likelihood of correctly classifying sentence 
pairs: 

. LNSP(θ) = E(s1,s2),y
[
y log P(True | s1, s2; θ) + (1 − y) log P(False | s1, s2; θ)

]
,

where .y = 1 if .s2 follows . s1, and .y = 0 otherwise. 
NSP encourages the model to learn semantic and syntactic dependencies between 

sentences, which are crucial for tasks like question answering and text summarization. 
Formally, NSP training maximizes the conditional dependency between consecutive 
sentences: 

. Mutual Information(s2; s1) ≥ Mutual Information(s2; s1|s3),

where .s3 is an unrelated sentence. 
In BERT, NSP is combined with MLM during pre-training. The model is pre-

sented with pairs of sentences and learns to predict whether the second sentence is 
a continuation of the first, enhancing its ability to understand text coherence and 
discourse. 

Causal Language Modeling (CLM) 

Causal language modeling, also known as autoregressive language modeling, is a 
pre-training objective where the model predicts each token in a sequence based on 
the preceding tokens. This setup aligns with the natural reading order of text, where 
each word is conditioned on all previous words. 

The objective is to maximize the likelihood of the sequence under the model: 

.LCLM(θ) = Ex

[
n∑

i=1

log P(xi | x1, x2, . . . , xi−1; θ)

]
.
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CLM models the sequential dependency between tokens, with each token being 
conditioned on all preceding tokens. This autoregressive process can be expressed 
using the chain rule of probability: 

. P(x; θ) =
n∏

i=1

P(xi | x1, x2, . . . , xi−1; θ).

The model is trained to maximize this joint probability, leading to a natural 
understanding of language in a left-to-right manner. 

Example GPT (Generative Pre-trained Transformer) models are trained using 
CLM. The model generates text by predicting the next word in a sequence, con-
ditioned on all previous words, making it particularly effective at text generation 
tasks. 

Permutation Language Modeling (PLM) 

PLM is a pre-training objective introduced by the XLNet model. PLM involves 
predicting tokens in a sequence based on a random permutation of the sequence 
order, rather than strictly left to right or right to left. This approach enables the model 
to capture bidirectional context while maintaining the autoregressive property. 

Let . π be a permutation of the indices .{1, 2, . . . , n}. The objective is to maximize 
the likelihood of the sequence under the permutation: 

. LPLM(θ) = Ex,π

[
n∑

i=1

log P(xπ(i) | xπ(1), xπ(2), . . . , xπ(i−1); θ)

]
.

PLM ensures that the model learns to represent sequences in a permutation-
invariant manner, capturing dependencies that are not tied to a fixed sequential 
order. The model is trained to maximize the expected likelihood over all possible 
permutations: 

. Eπ [P(x; θ)] =
∑

π

P(π)

n∏

i=1

P(xπ(i) | xπ(1), . . . , xπ(i−1); θ),

where .P(π) is the probability of the permutation . π . 
Example: XLNet ([ 4]) uses PLM to combine the strengths of both autoregressive 

and bidirectional models. By predicting tokens based on all possible permutations 
of a sequence, XLNet captures richer context compared to traditional left-to-right or 
right-to-left models.
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5.1.2 Applications in NLP 

Transformers have revolutionized various NLP tasks, with applications ranging from 
machine translation to text generation. This section explores the mathematical foun-
dations of these applications, focusing on how transformer models are formulated 
for translation tasks, the evaluation metrics used to assess their performance, and the 
principles underlying text generation. 

Machine Translation 

Machine translation (MT) is one of the most prominent applications of transformer 
models. The goal of MT is to translate a sentence or document from one language to 
another while preserving the meaning and fluency of the original text. Transformers, 
with their encoder–decoder architecture, have become the backbone of state-of-the-
art translation systems. 

Let .x = (x1, x2, . . . , xn) be the input sentence in the source language, and 
.y = (y1, y2, . . . , ym) be the output sentence in the target language. The goal of 
the translation model is to learn the conditional probability distribution .P(y | x; θ), 
where . θ represents the parameters of the transformer model. 

The translation task can be formulated as a sequence-to-sequence problem, where 
the model is trained to maximize the log-likelihood of the target sentence given the 
source sentence: 

. LMT(θ) =
∑

(x,y)∈D
log P(y | x; θ),

where .D is the training dataset consisting of pairs of sentences in the source and 
target languages. 

The consistency of a Seq2Seq model in machine translation requires that the 
encoder fully captures the semantic content of the source sentence, and the decoder 
uses this information to generate a syntactically and semantically correct target 
sentence. Formally, for a well-trained model: 

. Mutual Information(Hi ; x) ≥ Mutual Information(yi ; x),

where .Hi are the encoder hidden states and .yi are the decoder outputs. 
Example: In a transformer-based translation system like Google Translate, the 

encoder processes the entire input sentence to generate a set of context-aware embed-
dings, which the decoder then uses to produce the translation, one word at a time, 
conditioned on the previously generated words.
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Mathematical Formulation of Translation Models 

In machine translation, the transformer model operates within the encoder–decoder 
framework, where the encoder generates a representation of the source sentence, and 
the decoder generates the translation by attending to the encoder’s representation. 

The encoder takes the source sentence .x = (x1, x2, . . . , xn) and produces a 
sequence of hidden states .H = (H1, H2, . . . , Hn), where each hidden state .Hi is 
a contextualized representation of the word . xi . 

The decoder then generates the target sentence.y = (y1, y2, . . . , ym) by attending 
to the hidden states .H and predicting each word .yi sequentially: 

. P(yi | y1, . . . , yi−1, H; θ) = softmax
(

Woh(L)
i

)
,

where .h(L)
i is the final hidden state in the decoder and .Wo is the output projection 

matrix. 
The attention mechanism in the transformer allows the decoder to focus on rele-

vant parts of the source sentence when generating each word in the target sentence. 
Mathematically, the attention weights .αi j between the decoder’s query .qi and the 
encoder’s key .k j are given by 

. αi j = exp(q�
i k j )∑n

j ′=1 exp(q
�
i k j ′)

.

The context vector . ci , which the decoder uses to generate the next word, is then 
a weighted sum of the encoder’s hidden states: 

. ci =
n∑

j=1

αi j Hj .

This mechanism ensures that the translation is contextually accurate and seman-
tically consistent. 

Example: In translating the sentence “The cat sat on the mat” to French, the 
attention mechanism ensures that “cat” is correctly translated to “chat” and “mat” to 
“tapis,” maintaining the semantic integrity of the sentence. 

Evaluation Metrics (BLEU, METEOR) 

Evaluating the quality of machine translation models is essential for understanding 
their effectiveness. BLEU (Bilingual Evaluation Understudy) and METEOR (Met-
ric for Evaluation of Translation with Explicit ORdering) are two commonly used 
metrics.
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BLEU measures the overlap between the machine-generated translation and one 
or more reference translations. It is calculated using precision scores for n-grams up 
to a specified order . N , typically 4: 

. BLEU = BP · exp
(

N∑

n=1

wn log pn

)
,

where .pn is the precision for n-grams of length . n, .wn are the weights (typically 
uniform), and BP is the brevity penalty to penalize translations that are too short. 

BLEU is consistent with human judgment to some extent, particularly for high-
scoring translations. However, it can be sensitive to exact word matches and may 
not fully capture the quality of translations that use different wording but convey the 
same meaning. 

METEOR is designed to address some of BLEU’s limitations by considering 
synonymy, stemming, and word order. It combines precision and recall with a penalty 
for fragmented matches: 

. METEOR = Fmean · (1 − Penalty),

where .Fmean is a weighted harmonic mean of precision and recall, and Penalty 
accounts for the alignment fragmentation. 

METEOR is more sensitive to semantic equivalence and word order, making it 
a better measure of translation quality in cases where the translation is accurate but 
uses different words or phrases than the reference. 

Example: In evaluating translations from English to French, BLEU might give a 
high score if the translation is a close word-for-word match with the reference, while 
METEOR might score it higher if the translation accurately captures the meaning, 
even with different phrasing. 

Text Generation 

Text generation involves generating coherent and contextually relevant text 
sequences, often as a continuation of a given prompt. Transformers, particularly 
those trained with causal language modeling, are highly effective at generating 
natural language text. 

Given a prompt .x = (x1, x2, . . . , xn), the goal of text generation is to produce a 
continuation.y = (y1, y2, . . . , ym) such that the entire sequence.z = (x, y) is coherent 
and contextually relevant. The likelihood of the generated sequence is maximized 
using 

.Lgen(θ) =
m∑

i=1

log P(yi | x1, . . . , xn, y1, . . . , yi−1; θ).
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Autoregressive models like transformers ensure coherence in generated text by 
conditioning each word on the entire preceding context. The chain rule of probability 
guarantees that the generated sequence . z maintains internal consistency: 

. P(z; θ) =
n+m∏

i=1

P(zi | z1, . . . , zi−1; θ).

Example: In a text generation task, a transformer model might be given the prompt 
“Once upon a time,” and generate a coherent continuation like “there was a young 
princess who lived in a grand castle.” The model’s ability to generate such text 
depends on its understanding of narrative structure and language. 

Generative Models 

Generative models in NLP aim to learn the underlying distribution of a language to 
generate new, coherent text that mimics human writing. Transformers, particularly 
those trained with autoregressive or masked language modeling objectives, are well 
suited for generative tasks such as text completion, story generation, and dialog 
systems. 

Let .x = (x1, x2, . . . , xn) be an input sequence and .y = (y1, y2, . . . , ym) be the 
generated output sequence. The generative model seeks to maximize the joint 
probability of the entire sequence .z = (x, y): 

. P(z; θ) = P(x1, x2, . . . , xn, y1, y2, . . . , ym; θ).

This joint probability can be factorized using the chain rule of probability: 

. P(z; θ) =
n+m∏

i=1

P(zi | z1, z2, . . . , zi−1; θ),

where . θ represents the parameters of the transformer model. 
For a generative model to produce coherent text, it must effectively model the 

dependencies between tokens. The coherence of the generated text is ensured by 
maximizing the conditional probabilities in the factorization: 

. max
θ

n+m∏

i=1

P(zi | z1, z2, . . . , zi−1; θ).

The ability to capture these dependencies is critical to producing human-like text. 
Example: In a story generation task, a transformer-based generative model might 

be given a prompt like “In a distant land,” and generate a continuation such as “a brave
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knight set out on a quest to find a hidden treasure.” The model’s success depends on 
its understanding of narrative structure and language conventions. 

Evaluation Metrics (Perplexity, ROUGE) 

Evaluation metrics are crucial for assessing the quality of generative models and text 
summarization systems. Perplexity and ROUGE are commonly used metrics, each 
with specific applications and mathematical foundations. 

Perplexity is a measure of how well a probabilistic model predicts a sample. It is 
commonly used to evaluate language models, where a lower perplexity indicates a 
better model. Formally, perplexity is defined as 

. Perplexity(D; θ) = exp

(
− 1

N

N∑

i=1

log P(xi | x1, x2, . . . , xi−1; θ)

)
,

where .D is the dataset and .N is the number of tokens in the dataset. 
Perplexity can be interpreted as the inverse of the geometric mean per-word like-

lihood. It measures how surprised the model is by the actual sequence. For an ideal 
model that perfectly predicts the sequence, perplexity would be 1. 

Example: A language model with a perplexity of 10 is, on average, as uncertain 
about the next word as if it had to choose uniformly among 10 possible words. Lower 
perplexity values indicate better predictive performance. 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE is a set 
of metrics used to evaluate the quality of text summaries by comparing them to refer-
ence summaries. ROUGE-N measures the overlap of n-grams between the generated 
summary and the reference summary: 

. ROUGE-N =
∑

gram∈Ref min(Countgen(gram),Countref(gram))
∑

gram∈Ref Countref(gram)
,

where .Countgen and .Countref are the counts of the n-gram in the generated and 
reference summaries, respectively. 

ROUGE-N is primarily a recall-based metric, focusing on how much of the refer-
ence summary is captured by the generated summary. High ROUGE scores indicate 
that the generated summary contains a significant portion of the important content 
from the reference summary. 

Example: In text summarization, ROUGE-1 (unigram overlap) and ROUGE-2 
(bigram overlap) are commonly used to evaluate how well a model-generated sum-
mary captures the essence of a reference summary. High ROUGE scores generally 
correlate with high-quality summaries.



5.1 Language Modeling 231

Text Summarization 

Text summarization is the process of condensing a long piece of text into a shorter 
version while preserving its key information. Transformers can perform both extrac-
tive summarization, which selects important sentences from the original text, and 
abstractive summarization, which generates new sentences that capture the essence 
of the original text. 

Let .x = (x1, x2, . . . , xn) be the input document and .y = (y1, y2, . . . , ym) be the 
generated summary. The summarization model seeks to maximize the conditional 
probability: 

. P(y | x; θ) =
m∏

i=1

P(yi | y1, y2, . . . , yi−1, x; θ).

In extractive summarization, . y is a subset of sentences from . x. In abstractive 
summarization, . y is a newly generated sequence that paraphrases and condenses the 
information in . x. 

A summarization model must preserve the essential information from the origi-
nal document while generating a concise output. Formally, the mutual information 
between the original document . x and the summary . y should be maximized 

. Mutual Information(y; x) ≥ Mutual Information(y; x \ y),

ensuring that the summary retains the key content from the document. 
Example: For a news article, an extractive summarizer might select sentences 

that mention the key facts, while an abstractive summarizer might generate a new 
sentence like “The president announced a new policy today,” condensing the article 
into its core message. 

Extractive and Abstractive Summarization 

In extractive summarization, the model identifies and selects key sentences from the 
original document to form the summary. The challenge lies in selecting sentences 
that together provide a coherent and informative summary. 

Let .x = (x1, x2, . . . , xn) be the input document consisting of sentences . xi .  The  
extractive summarizer selects a subset .y ⊆ x that maximizes an objective function 
. f (y, x; θ): 

. y∗ = argmax
y⊆x

f (y, x; θ).

The objective function typically measures the informativeness and redundancy of 
the selected sentences. 

Many extractive summarization objectives are submodular, meaning the marginal 
gain of adding a sentence to the summary decreases as more sentences are added. 
This property ensures that greedy algorithms can provide near-optimal solutions:
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. f (y ∪ {xi }) − f (y) ≥ f (y′ ∪ {xi }) − f (y′)

for all .y ⊆ y′ ⊆ x and .xi ∈ x \ y′. 

In abstractive summarization, the model generates new sentences that capture the 
main ideas of the document, often rephrasing or condensing the original text. This 
requires a deeper understanding of the document’s content and the ability to generate 
coherent and fluent text. 

Given the input document .x = (x1, x2, . . . , xn), the abstractive summarizer gen-
erates a summary .y = (y1, y2, . . . , ym) by maximizing the conditional probability: 

. P(y | x; θ) =
m∏

i=1

P(yi | y1, y2, . . . , yi−1, x; θ),

where . θ represents the model parameters. 
Abstractive summarization involves both paraphrasing and compressing the orig-

inal text. The model learns to generate new text that maintains the semantic content 
while reducing the length: 

. Mutual Information(y; x) ≈ Mutual Information(y; x \ y),

ensuring that the summary conveys the essential information from the original 
document. 

Example: In summarizing a research paper, an abstractive model might generate a 
concise summary like “This study presents a novel algorithm for optimizing network 
flows,” capturing the main contributions of the paper without copying verbatim from 
the text. 

Evaluation Metrics (ROUGE, BLEU) 

The quality of summarization models is typically evaluated using metrics like 
ROUGE and BLEU, which compare the generated summary to reference summaries. 

ROUGE, as previously discussed, measures the overlap of n-grams, sequences 
of words, and word pairs between the generated summary and the reference sum-
mary. ROUGE-1, ROUGE-2, and ROUGE-L (longest common subsequence) are 
commonly used. 

ROUGE-N for n-grams is defined as 

.ROUGE-N =
∑

gram∈Ref min(Countgen(gram),Countref(gram))
∑

gram∈Ref Countref(gram)
.
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ROUGE-N captures the recall of the generated summary, but it can also be adapted 
to measure precision by swapping the roles of the generated and reference summaries: 

. ROUGE-NPrecision =
∑

gram∈Gen min(Countgen(gram),Countref(gram))
∑

gram∈Gen Countgen(gram)
.

BLEU measures the precision of n-grams in the generated summary against the 
reference summary, with a brevity penalty to penalize overly short summaries. It is 
more commonly used for machine translation but can be applied to summarization. 

BLEU score is computed as 

. BLEU = BP · exp
(

N∑

n=1

wn log pn

)
,

where .pn is the precision for n-grams of length . n, .wn are the weights, and BP is the 
brevity penalty. 

Example: In evaluating a summary generated by a transformer model, ROUGE 
scores might indicate how much of the reference summary’s content is captured, 
while BLEU might provide insight into the fluency and precision of the generated 
text. 

5.2 Transformer-Based Models 

BERT is one of the most influential models in NLP, setting a new standard for various 
tasks such as question answering, text classification, and sentiment analysis. This 
section explores the mathematical foundations of BERT, its architecture, the role of 
the self-attention mechanism, and the processes of pre-training and fine-tuning that 
are integral to its success. 

5.2.1 BERT 

BERT is a transformer-based model that captures bidirectional context in text, mean-
ing it considers both the left and right contexts of a word to generate more mean-
ingful representations. This bidirectional approach distinguishes BERT from earlier 
models, which typically processed text in a unidirectional manner.
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Mathematical Foundation 

BERT is based on the concept of contextualized word embeddings, where the repre-
sentation of a word depends on its surrounding words. This is achieved through the 
use of transformers, specifically the encoder part of the transformer architecture. 

Let.x = (x1, x2, . . . , xn) be an input sequence of tokens, where each.xi is a token 
from a vocabulary . V . The goal of BERT is to learn a function . fθ that maps this 
sequence to a sequence of contextualized embeddings .h = (h1, h2, . . . , hn), where 
.hi represents the embedding of token .xi conditioned on the entire sequence: 

. hi = fθ (xi | x1, x2, . . . , xi−1, xi+1, . . . , xn).

The function. fθ is parameterized by the layers of the transformer encoder, which 
involves multiple layers of self-attention and feedforward networks. 

BERT’s bidirectional nature is mathematically grounded in the fact that each 
token’s representation .hi is computed by attending to all tokens in the sequence: 

. hi = SelfAttention(qi , K , V ),

where .qi is the query derived from . xi , and .K and .V are the key and value matrices 
derived from the entire sequence. x. This attention mechanism ensures that.hi captures 
information from both the left and right contexts of . xi . 

Example: Consider the sentence “The bank will close at noon.” In BERT, the word 
“bank” will have different embeddings depending on the surrounding words “will” 
and “close,” helping to distinguish between the meanings of “bank” as a financial 
institution and a riverbank. 

Architecture and Layers 

BERT’s architecture consists of multiple transformer encoder layers stacked on 
top of each other. Each layer comprises a self-attention mechanism followed by 
a feedforward neural network, with layer normalization and residual connections. 

Let .X ∈ R
n×d be the input matrix, where . n is the sequence length and . d is the 

dimensionality of the embeddings. The output of the .l-th encoder layer is given by 

. H(l) = LayerNorm
(
H(l−1) + FFN

(
SelfAttention

(
H(l−1)

)))
,

where .H(l−1) is the output of the previous layer and FFN denotes the feedfor-
ward network, which applies two linear transformations with a ReLU activation 
in between: 

. FFN(h) = ReLU(hW1 + b1)W2 + b2.

The stacking of transformer layers allows for deep contextualization, where infor-
mation from different parts of the sequence is progressively integrated. The residual
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connections help preserve the original input information, while the normalization 
stabilizes training: 

. H(l) = H(l−1) + O(d
3
2 ),

where .O(d
3
2 ) represents the complexity of the attention mechanism. 

Example: In a 12-layer BERT model (BERT-Base), each word in a sentence is 
transformed through 12 layers of self-attention and feedforward operations, pro-
gressively refining the word representations by incorporating more context from the 
entire sentence. 

Self-Attention Mechanism in BERT 

The self-attention mechanism is a critical component of BERT, allowing the model 
to weigh the importance of different tokens in a sequence when constructing the 
representation of a particular token. 

The self-attention mechanism computes a weighted sum of values, where the 
weights (attention scores) are determined by the similarity between the query and 
key vectors. Formally, for a query vector . q and a set of key-value pairs .(K , V ),  the  
self-attention output is 

. Attention(q, K , V ) =
n∑

i=1

αivi , αi = exp(q�ki )∑n
j=1 exp(q

�k j )
,

where .ki and .vi are the key and value vectors for token . xi . 
Self-attention enables BERT to capture complex dependencies between words, 

regardless of their distance in the sequence. The attention scores .αi reflect the 
model’s focus on different parts of the input sequence, leading to context-aware 
word embeddings: 

. hi =
n∑

j=1

αi jv j .

This mechanism allows BERT to handle phenomena like polysemy and syntactic 
ambiguity effectively. 

Example: In the sentence “The animal didn’t cross the road because it was too 
tired,” the self-attention mechanism helps BERT understand that “it” refers to “the 
animal,” rather than “the road,” by assigning higher attention scores to relevant tokens. 

Pre-training and Fine-tuning 

BERT’s success is largely due to its two-stage training process: pre-training on large 
text corpora and fine-tuning on specific downstream tasks.



236 5 Transformers in Natural Language Processing

1. Pre-training: BERT is pre-trained on two tasks—MLM and NSP. The pre-
training objective combines the losses from both tasks: 

. Lpre-train(θ) = LMLM(θ) + LNSP(θ),

where .LMLM(θ) is the loss for predicting masked tokens and .LNSP(θ) is the loss for 
predicting sentence order. 

2. Fine-tuning: After pre-training, BERT is fine-tuned on specific tasks by adding 
task-specific layers and minimizing the corresponding loss function .Ltask(θ): 

. Lfine-tune(θ) = Ltask(θ).

Fine-tuning typically involves fewer epochs and task-specific data, adapting the 
pre-trained BERT model to various applications. 

The pre-training phase allows BERT to learn transferable representations that 
generalize well across different NLP tasks. This is mathematically expressed by the 
low variation in task-specific performance across a wide range of tasks: 

. Vartasks(Lfine-tune(θ)) 
 Vartasks(Lfrom-scratch(θ)),

indicating that the fine-tuning loss is much lower for pre-trained models than for 
models trained from scratch. 

Example: BERT is pre-trained on a large corpus like Wikipedia, then fine-tuned 
on a sentiment analysis task. The model quickly adapts to the new task, leverag-
ing its understanding of language from the pre-training phase to excel in sentiment 
classification. 

Pre-training Tasks (MLM, NSP) 

BERT’s pre-training tasks—MLM and NSP—are designed to enable the model to 
learn deep contextual relationships in text. 

MLM involves randomly masking some tokens in the input sequence and training 
the model to predict these masked tokens based on the surrounding context. The 
MLM loss is defined as 

. LMLM(θ) = E(x,m)

[
n∑

i=1

mi log P(xi | x\i ; θ)

]
,

where .m is a binary mask vector and .x\i denotes the sequence with the .i-th token 
masked.
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NSP is designed to help the model understand sentence relationships. The model is 
given pairs of sentences and trained to predict whether the second sentence logically 
follows the first: 

. LNSP(θ) = E(s1,s2),y
[
y log P(True | s1, s2; θ) + (1 − y) log P(False | s1, s2; θ)

]
,

where .y = 1 if .s2 follows . s1, and .y = 0 otherwise. 
The combination of MLM and NSP tasks in pre-training allows BERT to learn 

robust representations that are sensitive to both local word context (through MLM) 
and global sentence relationships (through NSP): 

. θpre-train = argmin
θ

(LMLM(θ) + LNSP(θ)) .

These representations are then fine-tuned for specific tasks, providing a strong 
foundation for task-specific learning. 

Example: MLM enables BERT to predict masked words based on the context, 
improving its understanding of syntax and semantics. NSP, on the other hand, helps 
BERT capture discourse-level information, such as the logical sequence of sentences, 
making it effective for tasks like document classification and passage retrieval. 

Fine-tuning for Downstream Tasks 

Fine-tuning is the process by which a pre-trained model like BERT is adapted to a 
specific task by adjusting its parameters to minimize a task-specific loss function. The 
key idea is that the pre-trained model already captures general linguistic knowledge, 
and fine-tuning allows it to specialize in the nuances of the target task. 

Let .Dtask = {(x(i), y(i))}Ni=1 be the dataset for a downstream task, where .x(i) is an 
input example and .y(i) is the corresponding label or output. The objective of fine-
tuning is to find the parameter set .θ∗ that minimizes the task-specific loss function 
.Ltask(θ): 

. θ∗ = argmin
θ

N∑

i=1

Ltask( fθ (x(i)), y(i)),

where . fθ (x) is the function representing the BERT model with parameters . θ . 
Under typical conditions, the fine-tuning process converges to a local minimum 

of the loss function. The rate of convergence and the quality of the solution depend 
on the choice of optimization algorithm, learning rate, and the structure of the loss 
landscape: 

. lim
t→∞ θt = θ∗, where θt+1 = θt − η∇θLtask(θt ).
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Example: In fine-tuning BERT for sentiment analysis, the model might be trained 
to minimize the cross-entropy loss between the predicted sentiment scores and 
the true sentiment labels. The fine-tuning process adjusts the weights of BERT to 
optimize its performance on the sentiment analysis dataset. 

Text Classification 

Text classification involves assigning a label or category to a given piece of text. 
BERT excels at text classification tasks due to its ability to capture deep contextual 
relationships in the text. 

Given an input text.x = (x1, x2, . . . , xn), the goal is to predict a label. y from a set 
of possible labels . Y . The BERT model encodes the input into a fixed-dimensional 
vector.hCLS (corresponding to the [CLS] token) and passes it through a classification 
layer: 

. P(y | x; θ) = softmax(WhCLS + b),

where .W and . b are the weights and bias of the classification layer, respectively. 
The pre-trained BERT model transforms the input sequence into a high-

dimensional space where the different classes are more likely to be linearly sep-
arable. This transformation allows the classification layer to achieve high accuracy 
even with simple linear classifiers: 

. Ltask(θ) = −
|Y|∑

i=1

yi log P(yi | x; θ).

Example: For a spam detection task, BERT can be fine-tuned to classify emails as 
“spam” or “not spam.” The [CLS] token representation serves as a summary of the 
entire email, enabling the model to make accurate predictions based on the encoded 
contextual information. 

Named Entity Recognition (NER) 

Named Entity Recognition (NER) is the task of identifying and classifying named 
entities (such as people, organizations, locations) in text. BERT’s token-level 
representations are particularly effective for NER tasks. 

In NER, the goal is to assign a label .yi to each token .xi in the input sequence 
.x = (x1, x2, . . . , xn). BERT generates a contextualized embedding.hi for each token, 
and these embeddings are passed through a classification layer: 

. P(yi | xi , x; θ) = softmax(Whi + b),

where .W and . b are the weights and bias specific to the NER task.
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BERT’s self-attention mechanism enables the model to capture dependencies 
between tokens, making it particularly effective for NER. The model can distinguish 
between different entities based on their context: 

. hi = SelfAttention(hi , K , V ),

where .hi is influenced by other tokens in the sequence, allowing BERT to resolve 
ambiguities (e.g., distinguishing between “Apple” as a company versus a fruit). 

Example: In a sentence like “Apple announced a new product,” BERT can accu-
rately classify “Apple” as an organization and “product” as a common noun, using 
the surrounding context to disambiguate entity types. 

Question Answering 

Question Answering (QA) tasks require a model to read a passage and answer ques-
tions based on the content. BERT’s ability to understand context makes it highly 
effective for QA. 

Given a passage .p = (p1, p2, . . . , pm) and a question .q = (q1, q2, . . . , qn),  the  
goal is to find a span in the passage that answers the question. BERT encodes both 
the passage and the question, and the model predicts the start and end positions . s
and . e of the answer span: 

. P(s, e | p, q; θ) = P(s | p, q; θ) · P(e | p, q; θ),

where .P(s | p, q; θ) and .P(e | p, q; θ) are obtained from the softmax outputs over 
the token positions in the passage. 

The ability of BERT to predict the correct answer span depends on its capacity to 
model interactions between the passage and the question. The attention mechanism 
helps in aligning the passage tokens with the relevant parts of the question: 

. LQA(θ) = − log P(s | p, q; θ) − log P(e | p, q; θ).

Example: For the question “Who is the president of the United States?” given 
the passage “The president of the United States is Joe Biden,” BERT can accurately 
predict “Joe Biden” as the answer span by identifying the relevant context in the 
passage. 

Applications and Performance 

The versatility of BERT extends to a wide range of NLP applications, including 
sentiment analysis, machine translation, and text summarization. The model’s per-
formance is often benchmarked against datasets like GLUE (General Language 
Understanding Evaluation) and SQuAD (Stanford Question Answering Dataset).
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Performance metrics such as accuracy, F1-score, and Exact Match (EM) are used 
to evaluate BERT’s effectiveness across tasks. These metrics are derived from the 
model’s predictions . ŷ compared to the true labels . y: 

. Accuracy = 1

N

N∑

i=1

I(ŷi = yi ),

. F1-score = 2 · Precision · Recall
Precision + Recall

,

. Exact Match (EM) = 1

N

N∑

i=1

I(ŷi = yi ),

where . I is the indicator function. 
BERT’s architecture and pre-training strategy enable it to generalize well across 

different NLP tasks, reducing the gap between human performance and machine 
performance on benchmarks: 

. Generalization Error = E[Ltask(θ)] − E[Ltask(θhuman)],

where .θhuman represents the ideal human-level performance parameters. 
Example: On the GLUE benchmark, BERT achieves near-human performance 

across multiple tasks such as natural language inference and sentiment analysis, 
demonstrating its ability to understand and process complex language patterns. 

5.2.2 GPT 

GPT is an autoregressive model that generates text by predicting the next token in a 
sequence, conditioned on the previous tokens. Unlike BERT, which is bidirectional, 
GPT processes text in a unidirectional manner, making it particularly suited for 
generative tasks such as text completion and story generation. 

Mathematical Foundation 

The core idea behind GPT is to model the joint probability distribution of a sequence 
of tokens .x = (x1, x2, . . . , xn) in a way that allows the model to generate coherent 
sequences by sampling from this distribution.
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The joint probability of the sequence . x is factorized using the chain rule of 
probability, which allows GPT to predict each token sequentially: 

. P(x; θ) =
n∏

i=1

P(xi | x1, x2, . . . , xi−1; θ),

where . θ represents the parameters of the model. This factorization enables GPT to 
generate text in a left-to-right fashion, with each token being conditioned on the 
previous ones. 

GPT’s autoregressive nature ensures that the prediction of each token.xi depends 
solely on the preceding tokens .x1, x2, . . . , xi−1, which prevents future tokens from 
influencing the generation of . xi : 

. P(xi | x1, x2, . . . , xi−1; θ) = P(xi | hi−1),

where .hi−1 is the hidden state encoding information from the previous tokens. 
Example: In a text generation task, GPT might be given the prompt “Once upon 

a time,” and it would generate a continuation like “there was a kingdom ruled by a 
wise king.” The model’s ability to produce such coherent text stems from its learned 
probability distribution over sequences. 

Architecture and Layers 

GPT’s architecture is built on the transformer’s encoder–decoder framework, but it 
uses only the decoder stack of the transformer. This unidirectional nature of GPT is 
crucial for its autoregressive capabilities. 

Let .H(l) be the hidden state matrix at the .l-th layer, where . l ranges from 1 to . L , 
the total number of layers in the model. The computation within each layer can be 
described by the following equations: 

1. Self-Attention: 

. H(l) = LayerNorm
(
H(l−1) + SelfAttention

(
H(l−1)

))
,

where self-attention captures dependencies between tokens in the sequence. 
2. Feedforward Network: 

. H(l) = LayerNorm
(
H(l) + FFN

(
H(l)

))
,

where the feedforward network (FFN) applies non-linear transformations to the 
output of the self-attention mechanism. 

The depth of GPT, characterized by the number of layers . L , contributes to the 
expressivity of the model. As the number of layers increases, the model can capture
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more complex patterns and dependencies in the data, leading to more coherent and 
contextually relevant text generation: 

. H(L) = f (L)( f (L−1)(. . . f (1)(X))),

where . f (l) represents the operations at layer . l. 
Example: In GPT-2, a larger version of GPT, the model’s depth and size enable it 

to generate long passages of text that are often indistinguishable from human writing, 
demonstrating the power of the architecture. 

Causal Self-Attention 

Causal self-attention is a key feature of GPT that ensures each token is only influenced 
by the preceding tokens, making the model suitable for autoregressive text generation. 

In causal self-attention, the attention mechanism is masked to prevent any token 
from attending to future tokens. Let.Q, K, andV be the query, key, and value matrices, 
respectively. The attention scores are computed as 

. Attention(Q, K, V) = softmax

(
QK�
√
dk

+ M
)

V,

where .M is a masking matrix that sets the attention scores to negative infinity for 
future tokens, ensuring that .xi can only attend to tokens .x1, x2, . . . , xi−1. 

The causal nature of self-attention in GPT guarantees that the model’s output at 
each position depends only on the preceding context. This causality is crucial for 
tasks that require sequential generation, such as text completion: 

. Hi = SelfAttention(qi , K≤i , V≤i ),

where .K≤i and .V≤i are the key and value matrices up to the .i-th position. 
Example: In generating the sentence “The cat sat on the,” GPT predicts the next 

word “mat” by attending only to the preceding words “The cat sat on the,” ensuring 
that the generation is sequential and contextually accurate. 

Pre-training and Fine-tuning 

GPT’s training process involves two main stages: unsupervised pre-training on large 
text corpora and supervised fine-tuning on specific tasks. 

1. Pre-training: In the pre-training phase, GPT is trained to predict the next token 
in a sequence using a language modeling objective. The loss function for pre-training 
is the negative log-likelihood of the predicted tokens:
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. Lpre-train(θ) = −
n∑

i=1

log P(xi | x1, x2, . . . , xi−1; θ).

2. Fine-tuning: After pre-training, GPT is fine-tuned on task-specific data. The 
model is adapted to minimize a task-specific loss function, which could involve 
classification, generation, or other objectives: 

. Lfine-tune(θ) = E(x,y)∈Dtask

[
Ltask( fθ (x), y)

]
,

where .Dtask is the task-specific dataset. 
The representations learned during the pre-training phase are highly transfer-

able to a wide range of tasks. Fine-tuning allows the model to adapt these general 
representations to the specific requirements of a given task: 

. θfine-tune = θpre-train + �θ,

where .�θ represents the task-specific adjustments made during fine-tuning. 
Example: GPT can be pre-trained on a vast corpus of web text and then fine-tuned 

on a smaller dataset for a specific task like summarization or dialog generation. The 
fine-tuned model benefits from the rich language understanding developed during 
pre-training. 

Unsupervised Pre-training 

GPT’s success is largely attributed to its unsupervised pre-training, which allows the 
model to learn from large amounts of unlabeled text data, capturing the nuances of 
natural language. 

In unsupervised pre-training, the model is trained solely on the task of lan-
guage modeling, without any task-specific labels. The objective is to maximize the 
likelihood of the sequence given the previous tokens: 

. Lunsupervised(θ) = Ex∼D

[
−

n∑

i=1

log P(xi | x1, x2, . . . , xi−1; θ)

]
,

where .D is the pre-training corpus. 
Unsupervised pre-training enables GPT to capture a high density of informa-

tion from the training data, leading to the development of rich, context-aware 
representations that are beneficial for a wide range of tasks: 

. Information Density = 1

|D|
∑

x∈D
I(xi ; x1, x2, . . . , xi−1),

where . I represents the mutual information between tokens.
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Example: By pre-training on a massive corpus like the Common Crawl dataset, 
GPT learns to generate text that is coherent, contextually relevant, and often 
indistinguishable from human writing, demonstrating the power of unsupervised 
learning. 

Supervised Fine-tuning 

Supervised fine-tuning is the process by which a pre-trained GPT model is adapted 
to a specific task using labeled data. The goal is to optimize the model’s parameters 
to minimize a task-specific loss function, thereby improving its performance on the 
task at hand. 

Let.Dtask = {(x(i), y(i))}Ni=1 be the labeled dataset for the task, where.x
(i) represents 

the input text and .y(i) represents the corresponding label or output. The fine-tuning 
process involves minimizing the task-specific loss function .Ltask(θ) with respect to 
the model parameters . θ : 

. θ∗ = argmin
θ

N∑

i=1

Ltask( fθ (x(i)), y(i)),

where . fθ (x) represents the output of the GPT model for input . x. 
Under appropriate conditions, supervised fine-tuning converges to a local mini-

mum of the task-specific loss function. The rate of convergence and the quality of 
the solution depend on the choice of optimization algorithm, learning rate, and the 
structure of the loss landscape: 

. lim
t→∞ θt = θ∗, where θt+1 = θt − η∇θLtask(θt ).

Example: In fine-tuning GPT for a text classification task, the model might be 
trained to minimize the cross-entropy loss between the predicted class probabilities 
and the true labels. The fine-tuning process adjusts the model’s weights to optimize 
its performance on the classification dataset. 

Applications and Performance 

GPT has been fine-tuned for various NLP applications, including text generation, 
dialog systems, and story generation. Its performance in these applications is often 
evaluated using specific metrics that assess the quality and coherence of the generated 
text. 

1. Text Generation: Given a prompt . p, the goal of text generation is to produce 
a coherent and contextually relevant continuation .y = (y1, y2, . . . , ym). The model 
generates text by sampling from the conditional distribution:
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. P(y | p; θ) =
m∏

i=1

P(yi | p, y1, y2, . . . , yi−1; θ).

2. Dialog Systems: In dialog systems, the model generates responses . r to user 
inputs . u by modeling the conditional probability distribution: 

. P(r | u; θ) =
n∏

i=1

P(ri | u, r1, r2, . . . , ri−1; θ),

where . ri represents the tokens in the generated response. 
3. Story Generation: For story generation, the model generates a narrative based 

on an initial premise. s. The task is to produce a coherent and engaging continuation: 

. P(scont | s; θ) =
m∏

i=1

P(si | s, s1, s2, . . . , si−1; θ),

where .scont denotes the continuation of the story. 

The ability of GPT to maintain contextual coherence in generated text is a result 
of its autoregressive architecture, where each token is conditioned on the entire 
preceding context. This ensures that the generated text is both relevant and logically 
consistent: 

. P(y | p; θ) =
m∏

i=1

P(yi | hi−1),

where .hi−1 encodes the history up to the .i-th token. 
Example: In a dialog system, GPT might be fine-tuned to respond to user queries 

in a conversational manner. Given the input “How is the weather today?” the model 
could generate a contextually appropriate response like “It’s sunny and warm.” 

Text Generation 

Text generation involves producing coherent and contextually relevant sequences 
based on a given prompt. GPT excels at this task due to its ability to model long-range 
dependencies in text. 

Given a prompt .p = (p1, p2, . . . , pn), the goal is to generate a sequence . y =
(y1, y2, . . . , ym) that extends the prompt. The likelihood of the generated sequence 
is given by 

.P(y | p; θ) =
m∏

i=1

P(yi | p, y1, y2, . . . , yi−1; θ).
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The coherence of the generated text is ensured by maximizing the conditional 
probabilities of each token in the sequence. The autoregressive nature of GPT allows 
it to generate text that is consistent with the preceding context: 

. y∗ = argmax
y

P(y | p; θ).

Example: Given the prompt “The future of AI is,” GPT might generate a con-
tinuation like “full of exciting possibilities, with advances in machine learning and 
robotics shaping our world.” 

Dialog Systems 

Dialog systems aim to generate natural and engaging responses to user inputs in a 
conversation. GPT’s ability to model context makes it particularly effective for this 
task. 

For a dialog system, the model generates a response.r = (r1, r2, . . . , rn) to  a  use  r  
input .u = (u1, u2, . . . , um). The likelihood of the response is given by 

. P(r | u; θ) =
n∏

i=1

P(ri | u, r1, r2, . . . , ri−1; θ).

The effectiveness of GPT in dialog systems stems from its ability to generate 
responses that are contextually relevant, maintaining the flow of conversation. This 
is achieved by conditioning each token in the response on both the user input and 
the preceding tokens in the response: 

. r∗ = argmax
r

P(r | u; θ).

Example: In a customer service chatbot, given the user input “I need help with 
my order,” GPT might generate a response like “Sure, I can help with that. Can you 
provide your order number?” 

Story Generation 

Story generation involves creating coherent and engaging narratives based on an 
initial premise or a series of prompts. GPT is capable of generating long-form text 
that maintains narrative consistency. 

Given an initial premise.s = (s1, s2, . . . , sn), the goal is to generate a continuation 
.scont = (sn+1, sn+2, . . . , sm) that extends the story. The probability of the continuation 
is modeled as
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. P(scont | s; θ) =
m∏

i=n+1

P(si | s, sn+1, sn+2, . . . , si−1; θ).

GPT’s architecture allows it to generate stories that are both coherent and con-
sistent, ensuring that the generated narrative logically follows from the initial 
premise: 

. s∗
cont = argmax

scont
P(scont | s; θ).

Example: Given the premise “Once upon a time in a faraway kingdom,” GPT 
might generate a continuation like “there lived a young prince who dreamed of 
exploring the world beyond his castle.” 

Evaluation Metrics and Performance Analysis 

The performance of GPT in tasks such as text generation, dialog systems, and story 
generation is typically evaluated using metrics that assess the quality, coherence, and 
relevance of the generated text. 

1. Perplexity: Measures the model’s ability to predict the next token in a sequence. 
Lower perplexity indicates better performance: 

. Perplexity = exp

(
− 1

N

N∑

i=1

log P(xi | x1, x2, . . . , xi−1; θ)

)
.

2. BLEU (Bilingual Evaluation Understudy): Measures the overlap between the 
generated text and reference text based on n-gram precision: 

. BLEU = BP · exp
(

N∑

n=1

wn log pn

)
,

where .pn is the precision of n-grams and BP is the brevity penalty. 
3. ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Evaluates the 

quality of summaries by comparing n-grams, word sequences, and word pairs: 

. ROUGE-N =
∑

gram∈Ref min(Countgen(gram),Countref(gram))
∑

gram∈Ref Countref(gram)
.

Evaluation metrics such as Perplexity, BLEU, and ROUGE are effective for assess-
ing the performance of GPT in generative tasks. These metrics capture different 
aspects of text quality, such as fluency, precision, and recall:
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. Performance = 1

K

K∑

k=1

Metrick(ŷ, y),

where . ŷ and . y are the predicted and reference sequences, respectively. 
Example: In evaluating a story generation model, BLEU and ROUGE scores 

might be used to assess how closely the generated story matches a reference story, 
while Perplexity would indicate how well the model predicts the continuation of the 
story. 

5.3 Advanced Topics in NLP with Transformers 

Transformers have revolutionized various aspects of NLP, enabling significant 
advancements in sequence labeling and semantic tasks. This section explores the 
application of transformers to sequence labeling tasks such as part-of-speech tagging 
and chunking, as well as semantic tasks like semantic role labeling. The mathemat-
ical foundations of these applications are emphasized, with a focus on Geometry, 
Symmetry, and Intelligence. 

5.3.1 Transformers for Sequence Labeling 

Sequence labeling involves assigning a label to each token in a sequence. Trans-
formers, with their self-attention mechanisms and ability to capture long-range 
dependencies, are well suited for sequence labeling tasks. 

Part-of-Speech Tagging 

Part-of-speech (POS) tagging is the task of assigning a grammatical category (such 
as noun, verb, adjective) to each token in a sentence. Transformers leverage con-
textualized embeddings to improve the accuracy of POS tagging by considering the 
entire sentence context. 

Given a sequence of tokens .x = (x1, x2, . . . , xn), the goal is to assign a POS tag 
.yi to each token . xi . The transformer model generates a contextualized embedding 
.hi for each token, which is then passed through a classification layer to predict the 
POS tag: 

. P(yi | xi , x; θ) = softmax(Whi + b),

where .W and . b are the weights and bias of the classification layer, respectively.
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The self-attention mechanism in transformers enables the model to capture depen-
dencies between tokens, improving the accuracy of POS tagging by generating 
embeddings that consider the entire sentence context: 

. hi = SelfAttention(qi , K , V ),

where. qi , . K , and. V are the query, key, and value matrices derived from the sequence 
. x. 

Example: In the sentence “The quick brown fox jumps over the lazy dog,” the 
word “jumps” is correctly tagged as a verb because the transformer model captures 
its relationship with surrounding words. 

Chunking 

Chunking, also known as shallow parsing, involves grouping sequences of tokens 
into syntactically correlated parts of a sentence, such as noun phrases (NP) or verb 
phrases (VP). Transformers excel at chunking by utilizing their ability to model 
long-range dependencies. 

Given a sequence of tokens .x = (x1, x2, . . . , xn), the goal is to assign a chunk 
label .ci to each token . xi , where .ci indicates the chunk to which the token belongs. 
The transformer model generates a contextualized embedding.hi for each token and 
predicts the chunk label: 

. P(ci | xi , x; θ) = softmax(Whi + b),

where .W and . b are the parameters of the classification layer. 
Transformers effectively capture long-range dependencies in text, allowing for 

accurate chunking by modeling the relationships between non-adjacent tokens: 

. hi =
n∑

j=1

αi jv j , αi j = exp(q�
i k j )∑n

k=1 exp(q
�
i kk)

,

where.αi j are the attention weights that determine how much token.x j influences the 
representation of token . xi . 

Example: In the sentence “The quick brown fox jumps over the lazy dog,” the 
transformer model can correctly identify “The quick brown fox” as a noun phrase 
(NP) and “jumps over” as a verb phrase (VP).



250 5 Transformers in Natural Language Processing

5.3.2 Transformers for Semantic Tasks 

Semantic tasks involve understanding the meaning and relationships of words within 
a sentence. Transformers are particularly effective at these tasks due to their ability 
to model complex dependencies and capture semantic nuances. 

Semantic Role Labeling 

Semantic role labeling (SRL) is the task of identifying the predicate-argument struc-
ture of a sentence, determining the roles that different words play in relation to a 
predicate (usually a verb). Transformers excel at SRL by capturing the interactions 
between words and their roles in a sentence. 

Given a sentence .x = (x1, x2, . . . , xn) and a predicate . p, the goal is to assign a 
semantic role . ri to each token. xi . The transformer model generates a contextualized 
embedding .hi for each token and predicts the semantic role: 

. P(ri | xi , x, p; θ) = softmax(Whi + b),

where .W and . b are the parameters of the classification layer. 
The self-attention mechanism in transformers allows for the modeling of role-

specific interactions between tokens, leading to accurate predictions of semantic 
roles: 

. hi = SelfAttention(qi , K , V ),

where the query .qi is influenced by the predicate . p, ensuring that the context of the 
predicate is considered when determining the role of . xi . 

Example: In the sentence “She gave him a book,” the transformer model can 
identify “She” as the agent, “him” as the recipient, and “a book” as the theme, 
correctly assigning the semantic roles based on the predicate “gave.” 

Coreference Resolution 

Coreference resolution is the task of identifying expressions in a text that refer to 
the same entity. This task requires understanding the relationships between different 
parts of a text and is essential for maintaining coherence in text interpretation. 

Given a document consisting of tokens.x = (x1, x2, . . . , xn) and a set of mentions 
.M = {m1,m2, . . . ,mk}, where each mention .mi refers to a subsequence of tokens, 
the goal is to cluster these mentions into groups, where each group represents a 
distinct entity. The transformer model generates contextualized embeddings .hi for 
each token, which are used to determine the probability that two mentions .mi and 
.m j refer to the same entity:
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. P(coref(mi ,m j ) | x; θ) = σ(W[hmi , hm j ] + b),

where .[hmi , hm j ] is the concatenation of the embeddings of the mentions and . σ is 
the sigmoid function. 

The self-attention mechanism in transformers allows the model to capture rela-
tionships between distant tokens, making it effective for resolving coreferences, even 
when the mentions are far apart in the text: 

. hmi = SelfAttention(qmi , K , V ),

where .qmi is the query derived from the mention .mi , and .K and .V are the key and 
value matrices derived from the entire sequence . x. 

Example: In the text “John said he would come, but he didn’t,” the transformer 
model can resolve “he” as referring to “John” by considering the context provided 
by the entire sentence. 

5.3.3 Transformers for Structured Prediction 

Structured prediction involves making predictions that are interdependent and often 
require maintaining a certain structure, such as a tree or graph. Transformers have 
been adapted to handle structured prediction tasks like dependency parsing and 
constituency parsing. 

Dependency Parsing 

Dependency parsing aims to identify the syntactic structure of a sentence by estab-
lishing relationships between words, where each word (except the root) depends on 
exactly one other word. These relationships form a tree structure, with words as 
nodes and dependencies as directed edges. 

Given a sentence .x = (x1, x2, . . . , xn), the goal is to construct a dependency tree 
.T = (V, E), where. V are the nodes corresponding to the words in the sentence and. E
are the directed edges representing dependencies. The transformer model computes 
a score for each possible edge .ei j from word .xi to word . x j : 

. s(ei j | x; θ) = W�
e [hi ; h j ],

where .[hi ; h j ] is the concatenation of the embeddings of .xi and . x j , and .We is a 
weight vector. 

The optimal dependency tree .T ∗ maximizes the sum of the edge scores, subject 
to the constraint that the resulting structure is a valid tree:
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. T ∗ = arg max
T ∈F(x)

∑

(i, j)∈E

s(ei j | x; θ),

where .F(x) is the set of all valid dependency trees for the sentence . x. 
Example: In the sentence “The cat chased the mouse,” a dependency parser would 

identify “chased” as the root verb, with “The cat” and “the mouse” as its subjects 
and objects, respectively. 

Constituency Parsing 

Constituency parsing involves breaking down a sentence into its constituent parts, 
such as phrases and clauses, which are represented as nodes in a tree. Each node rep-
resents a linguistic unit, and the tree structure captures the hierarchical relationships 
between these units. 

Given a sentence.x = (x1, x2, . . . , xn), the goal is to construct a constituency tree 
.C = (V, E), where. V are the nodes representing constituents (e.g., noun phrases, verb 
phrases) and. E are the edges representing the hierarchical structure. The transformer 
model computes a score for each possible split point . k that divides a span .[i, j] into 
two sub-constituents: 

. s([i, j] → [i, k], [k + 1, j] | x; θ) = W�
c [h[i,k]; h[k+1, j]],

where .[h[i,k]; h[k+1, j]] is the concatenation of the embeddings representing the two 
sub-constituents and .Wc is a weight vector. 

The optimal constituency tree.C∗ maximizes the sum of the scores of all the splits, 
subject to the constraint that the resulting structure is a valid binary tree: 

. C∗ = arg max
C∈F(x)

∑

(i, j)∈E

s([i, j] → [i, k], [k + 1, j] | x; θ),

where .F(x) is the set of all valid constituency trees for the sentence . x. 
Example: In the sentence “The quick brown fox jumps over the lazy dog,” a 

constituency parser would identify “The quick brown fox” as a noun phrase and 
“jumps over the lazy dog” as a verb phrase, capturing the hierarchical structure of 
the sentence. 

5.3.4 Performance Analysis 

Performance analysis of transformer models involves evaluating how model size, 
computational efficiency, training time, and resource utilization impact the overall 
effectiveness of the model in NLP tasks.
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Model Size and Computational Efficiency 

Transformer models can vary significantly in size, from smaller models like BERT-
Base to massive models like GPT-3. The size of the model influences both its 
computational requirements and its ability to capture complex patterns in the data. 

Let .M be the number of parameters in the model, and let .C(M) represent the 
computational complexity of the model, typically measured in terms of FLOPs 
(floating-point operations): 

. C(M) = O(M2),

where .M is often proportional to the number of layers . L , the number of heads . H , 
and the dimensionality . d of the embeddings. 

As model size increases, the computational complexity grows quadratically, lead-
ing to increased training time and resource requirements. However, larger models 
often achieve better performance due to their increased capacity to capture complex 
relationships in the data: 

. Performance ∝ log(M),

indicating diminishing returns as model size increases. 
Example: While GPT-3, with its 175 billion parameters, achieves state-of-the-art 

performance across many tasks, it also requires enormous computational resources, 
making it less accessible for smaller scale applications. 

Training Time and Resource Utilization 

The training time and resource utilization of transformer models are critical factors 
that influence their practical deployment, especially in environments with limited 
computational resources. 

Let . T represent the total training time, and let . R denote the resources used, such 
as GPU hours. The training time is a function of model size .M, dataset size . D, and 
the batch size . B: 

. T ∝ M · D
B · Throughput ,

where throughput represents the number of examples processed per second. 
Optimizing training time involves balancing batch size, learning rate, and resource 

allocation to minimize .T while maximizing model performance. Techniques such 
as mixed-precision training and distributed training can be used to improve resource 
utilization: 

.Resource Efficiency = Performance

T · R .
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Training a large transformer model like BERT-Large on a massive dataset may 
require several days on a high-performance GPU cluster. Techniques like gradient 
accumulation and model parallelism can be used to reduce the effective training time 
without compromising model performance. 

5.4 Future Directions in NLP with Transformers 

As transformer models continue to evolve, several key areas of research are emerg-
ing that promise to extend their capabilities and address existing challenges. This 
section explores future directions in NLP with transformers, focusing on scalability, 
efficiency, multilingual and cross-lingual models, and ethical considerations. Each 
subsection delves into the mathematical principles that underpin these developments, 
emphasizing the themes of Geometry, Symmetry, and Intelligence. 

5.4.1 Scalability and Efficiency 

The scalability and efficiency of transformer models are critical as they grow in 
size and complexity. Researchers are exploring ways to scale transformers to larger 
datasets and more diverse tasks while maintaining computational efficiency and 
reducing the resource burden. 

Let .M represent the model size, .D the dataset size, and .C(M,D) the computa-
tional complexity required to train the model. The goal is to optimize this complexity 
while preserving or enhancing model performance. A key challenge is balancing the 
number of parameters with the model’s ability to generalize 

. C(M,D) = O(M · D · logM),

where the logarithmic factor accounts for optimization techniques such as sparsity 
and attention pruning. 

As transformer models scale, there is a trade-off between the number of parameters 
.M and the ability to efficiently utilize computational resources. Theoretical results 
suggest that beyond a certain point, increasing .M yields diminishing returns in 
performance unless accompanied by innovations in model architecture and training 
techniques: 

. lim
M→∞

Performance(M)

C(M,D)
≈ constant.

Research into scalable transformers includes techniques such as sparse attention, 
where only a subset of attention weights are computed, and model distillation, which 
compresses larger models into smaller, more efficient versions without significant 
loss in performance.
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5.4.2 Multilingual and Cross-lingual Models 

Multilingual and cross-lingual models aim to extend the capabilities of transformers 
to understand and generate text across multiple languages, facilitating language-
agnostic processing and improving performance in low-resource languages. 

Language-Agnostic Models 

Language-agnostic models are designed to perform equally well across different 
languages without relying on language-specific features. This requires the model to 
learn representations that are invariant to the linguistic characteristics of individual 
languages. 

Given a set of languages .L = {L1, L2, . . . , Lk}, the goal is to learn a shared 
representation .hi for each token .xi in a sequence . x such that the representation is 
invariant to the language: 

. h
L j

i = fθ (x
L j

i ), ∀L j ∈ L,

where . fθ is the shared model architecture parameterized by . θ . 
The success of language-agnostic models depends on their ability to learn invariant 

representations that generalize across languages. This invariance can be quantified 
by measuring the similarity between representations of equivalent sentences across 
languages: 

. E
(x

L j
i ,x

Lk
i )∈D

[
‖hL j

i − hLk
i ‖2

]
≈ 0, ∀L j , Lk ∈ L.

Example: XLM-R (Cross-lingual Language Model—RoBERTa) ([ 1]) is an exam-
ple of a multilingual transformer that leverages shared subword representations to 
achieve strong performance across multiple languages, including low-resource ones. 

Zero-shot and Few-shot Learning 

Zero-shot and few-shot learning enable transformer models to perform tasks in new 
languages or domains with little to no task-specific training data. This is particularly 
valuable in multilingual contexts where labeled data is scarce for certain languages. 

In zero-shot learning, the model is trained on a set of tasks .Ttrain and is then 
evaluated on a new task .Ttest without any additional training. The goal is to learn a 
generalizable function . fθ that can perform well on unseen tasks: 

. min
θ

ET ∼Ttrain [LT ( fθ )] , subject to ET ∼Ttest [LT ( fθ )] ≤ ε.
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The ability of a model to generalize in zero-shot scenarios is bounded by the 
diversity of the tasks in .Ttrain and the similarity between tasks in .Ttrain and .Ttest: 

. Gen. Error ≤ O
(√

log |Ttrain| + log(1/δ)

Ntrain

)
,

where .Ntrain is the number of training samples and . δ is the confidence level. 
Example: GPT-3 demonstrates remarkable zero-shot learning capabilities, where 

it can perform tasks like translation or summarization in languages it has not explicitly 
been trained on, by leveraging the broad knowledge encoded during its pre-training. 

5.4.3 Ethical Considerations 

As transformer models become more integrated into real-world applications, ethical 
considerations such as bias, fairness, privacy, and security are paramount. Addressing 
these concerns requires analysis and the development of new methodologies to ensure 
that models are both effective and responsible. 

Bias and Fairness 

Bias in transformer models can arise from the training data, leading to unfair treatment 
of certain groups or propagation of harmful stereotypes. Ensuring fairness involves 
both detecting and mitigating bias through careful model design and evaluation. 

Let .D be the dataset used to train the model, and let . fθ be the model. Bias can be 
quantified by measuring the disparity in model predictions across different subgroups 
.Gi within the population: 

. Bias = max
i, j

∣∣Ex∼Gi [ fθ (x)] − Ex∼G j [ fθ (x)]
∣∣ .

A model is considered fair if the disparity in predictions across subgroups is 
minimized. This can be enforced through regularization techniques that penalize 
large differences in subgroup performance: 

. Lfair(θ) = Ltask(θ) + λ · Bias(θ),

where .λ is a regularization parameter controlling the trade-off between task 
performance and fairness. 

Example: Gender bias in language models can manifest in tasks like sentiment 
analysis or word association, where certain words may be unfairly associated with 
gendered terms. Techniques like adversarial training or bias regularization can be 
employed to mitigate such biases.
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Privacy and Security 

Privacy and security concerns arise when transformer models are trained on sensitive 
data or are deployed in environments where data confidentiality is critical. Ensuring 
that models do not leak private information or are vulnerable to adversarial attacks 
is essential. 

Privacy in machine learning can be formalized using differential privacy, where 
the goal is to ensure that the inclusion or exclusion of a single data point .xi in the 
dataset .D has a limited impact on the model’s output: 

. P[ fθ (D) = y] ≤ eε · P[ fθ (D \ {xi }) = y] + δ,

where . ε is the privacy budget and . δ is a small probability. 
A transformer model can be made differentially private by adding noise to the 

gradients during training or through post-processing of the model outputs. The level 
of privacy is controlled by the parameter . ε, with smaller values indicating stronger 
privacy guarantees: 

. Private Loss(θ) = Ltask(θ) + 1

2ε2
‖θ‖22.

Example: In scenarios where transformer models are deployed in healthcare or 
finance, ensuring that the models are differentially private helps protect sensitive 
information while still allowing the models to learn useful patterns from the data. 
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Chapter 6 
Transformers in Computer Vision 

6.1 Vision Transformers (ViT) 

Vision transformers ([ 2, 5]) have emerged as a powerful alternative to CNNs for 
image classification and other computer vision tasks. The key idea behind ViT is to 
treat an image as a sequence of patches, analogous to how text is treated as a sequence 
of words in natural language processing. This section explores the mathematical 
formulation of ViT, focusing on the process of embedding image patches into a 
sequence of vectors that can be processed by the transformer model. 

6.1.1 Mathematical Formulation 

The vision transformer model operates by first converting an input image into a 
sequence of patches, each of which is then embedded into a vector representation. 
This sequence of patch embeddings is then fed into a standard transformer model, 
which processes the sequence and produces a final classification or other task-specific 
output. The key steps in this process involve image patch embedding, forming patch 
sequences and constructing the patch embedding layer. 

Image Patch Embedding 

Given an input image .I ∈ R
H×W×C , where .H is the height, .W is the width, and 

.C is the number of channels (e.g., 3 for RGB images), the image is divided into a 
grid of non-overlapping patches. Each patch . P is of size .P × P pixels, resulting in 
.N = H×W

P2 patches. 
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The patch .Pi, j at position .(i, j) within the image is a sub-matrix of the original 
image: 

. Pi, j = I[i P : (i + 1)P, j P : ( j + 1)P, :],

where . i and . j index the vertical and horizontal positions of the patch in the grid. 
The dimensionality of each patch.Pi, j is.P2 × C . This dimensionality is the num-

ber of pixels in the patch multiplied by the number of channels. The patches are 
typically flattened into vectors: 

. pi, j = flatten(Pi, j ) ∈ R
P2·C .

Example: For an image of size .224 × 224 × 3 and patch size .16 × 16, there are 
.N = 224×224

16×16 = 196 patches, each flattened into a vector of length . 16 × 16 × 3 =
768. 

Forming Patch Sequences 

Once the image is divided into patches and each patch is flattened into a vector, these 
vectors are treated as tokens in a sequence, analogous to the words in a sentence 
processed by a transformer. 

The sequence of patch vectors .pi, j is concatenated to form the input sequence . X
to the transformer: 

. X = [p1,p2, . . . ,pN ] ∈ R
N×(P2·C),

where each .pk corresponds to a flattened patch .pi, j . 
The length of the sequence is . N , the number of patches, and the dimensionality 

of each sequence element (token) is .P2 · C . This sequence is then input into the 
transformer model, which expects a sequence of vectors as input. 

Example: Continuing with the example of an image with .196 patches, the input 
sequence. X to the transformer has a length of .196, with each element being a vector 
of size .768. 

Patch Embedding Layer 

The flattened patch vectors.pk are then linearly transformed into a lower-dimensional 
space suitable for processing by the transformer. This is done by the patch embedding 
layer, which applies a learnable linear transformation to each patch vector. 

Let .Wemb ∈ R
(P2·C)×D be the weight matrix of the patch embedding layer, where 

.D is the dimensionality of the transformer’s input vectors. The embedding for each 
patch .pk is computed as 

.ek = pkWemb + bemb,
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where .bemb ∈ R
D is the bias term. The sequence of embeddings . E is then 

. E = [e1, e2, . . . , eN ] ∈ R
N×D.

The patch embedding layer reduces the dimensionality of each patch vector from 
.P2 · C to . D. The choice of .D is typically smaller than .P2 · C , allowing the model 
to focus on the most relevant features of each patch. 

Example: If the original patch vectors are of size .768 and the transformer input 
dimensionality.D is.512, then the patch embedding layer reduces the dimensionality 
of each patch to .512, resulting in an embedding sequence . E of size .196 × 512. 

Positional Encoding for Images 

Let.E = [e1, e2, . . . , eN ] be the sequence of patch embeddings, where.N is the num-
ber of patches. Positional encoding adds a vector .pi to each embedding .ei to incor-
porate the positional information. The modified embedding sequence .E′ is given 
by 

. E′ = [e1 + p1, e2 + p2, . . . , eN + pN ],

where .pi is the positional encoding for the .i-th patch. 
The addition of positional encodings ensures that the transformer model can dis-

tinguish between different spatial positions of patches, effectively introducing spatial 
order into the otherwise permutation-invariant architecture. Formally, the positional 
encoding function . P maps each position . i to a unique vector . pi : 

. P : i �→ pi ∈ R
D,

where .D is the dimensionality of the embedding space. This mapping preserves the 
spatial structure of the image within the transformer model. 

Example: In an image divided into .14 × 14 patches, the positional encoding 
ensures that patches corresponding to adjacent image regions (e.g., the top-left corner 
or the bottom-right corner) are recognized as being near each other spatially. 

Sinusoidal Positional Encoding 

Sinusoidal positional encoding is a fixed, deterministic approach that encodes posi-
tion information using sine and cosine functions of different frequencies. This encod-
ing method is designed to be simple yet effective, capturing relative positions through 
periodic functions. 

For a patch at position . i in the sequence, the positional encoding vector .pi is 
defined as 

.pi [2k] = sin

(
i

100002k/D

)
, pi [2k + 1] = cos

(
i

100002k/D

)
,
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where .k = 0, 1, . . . , D/2 − 1 and .D is the dimensionality of the embedding space. 
This formulation ensures that each dimension of the positional encoding vector 
captures a different aspect of the position through a unique frequency component. 

The sinusoidal positional encoding allows the model to distinguish positions 
through unique combinations of sine and cosine functions. The periodic nature of the 
functions introduces a smooth, continuous notion of position that generalizes well 
to sequences of varying lengths. 

Example: For an image patch sequence, the sinusoidal positional encoding will 
assign unique vectors to each patch, even for images of different sizes, allowing the 
transformer to consistently interpret spatial relationships. 

Learned Positional Encoding 

Unlike sinusoidal positional encodings, learned positional encodings are parameters 
that are learned during the training process. Each position . i is associated with a 
learnable vector . pi , which is optimized along with the other model parameters. 

Let .P ∈ R
N×D be the matrix of positional encodings, where each row .pi corre-

sponds to the positional encoding of patch. i . These encodings are initialized randomly 
and updated through backpropagation: 

. P ← P − η
∂L
∂P

,

where .L is the loss function and . η is the learning rate. The learned positional 
encodings thus adapt to the specific task and dataset. 

Learned positional encodings offer greater flexibility compared to sinusoidal 
encodings, as they can adapt to specific patterns in the data. However, this flexi-
bility comes at the cost of requiring additional parameters and the risk of overfitting, 
particularly in small datasets. 

Example: In large-scale vision tasks, learned positional encodings can capture 
complex spatial relationships that might be specific to certain datasets, such as the 
relative positioning of objects in images, thereby improving model performance. 

6.1.2 ViT Architecture 

The vision transformer architecture adapts the standard transformer model, origi-
nally designed for sequence-based tasks like natural language processing, to handle 
visual data. The key components of the ViT architecture include the input embedding 
layer (which handles image patches), the transformer encoder layers, and the final 
classification head. Each component plays a crucial role in the model’s ability to 
capture and process visual information effectively.
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Let.I ∈ R
H×W×C be an input image, where.H is the height,.W is the width, and. C

is the number of channels (e.g., 3 for RGB images). The ViT architecture processes 
this image as follows: 

1. Patch Embedding: The image . I is divided into .N non-overlapping patches, 
each of size .P × P . Each patch is then flattened and linearly transformed into an 
embedding vector. Mathematically, this step is represented as 

. X = [e1, e2, . . . , eN ],

where .ei ∈ R
D is the embedding vector for the .i-th patch and .D is the dimension-

ality of the embedding space. The transformation from the flattened patch to the 
embedding vector is a linear mapping: 

. ei = PiWemb + bemb,

where .Wemb ∈ R
(P2·C)×D and .bemb ∈ R

D ensure that each patch is mapped consis-
tently to the same embedding space. 

2. Addition of Positional Encodings: To incorporate spatial information, positional 
encodings .Pi are added to each patch embedding. This modifies the input sequence 
to 

. X′ = [e1 + p1, e2 + p2, . . . , eN + pN ],

where .pi ∈ R
D represents the positional encoding for the .i-th patch. The addi-

tion of positional encodings ensures that the transformer model can distinguish 
between patches based on their original positions within the image, preserving spatial 
relationships during the encoding process. 

3. Transformer Encoder Layers: The sequence of patch embeddings with posi-
tional encodings is then processed by a series of transformer encoder layers. 
Each encoder layer consists of multi-head self-attention (MHSA) and feedforward 
networks (FFNs), followed by layer normalization: 

. Z(l) = LayerNorm
(
X(l) + MHSA

(
X(l)

))
,

. X(l+1) = LayerNorm
(
Z(l) + FFN

(
Z(l)

))
,

where.X(l) is the input to the.l-th encoder layer and.X(l+1) is the output. Each encoder 
layer refines the representations of the patch embeddings by aggregating information 
across the entire sequence through self-attention and by transforming these represen-
tations via feedforward networks. This iterative refinement process allows the model 
to capture complex, hierarchical features from the image. 

4. Classification Head: After passing through multiple transformer encoder layers, 
the final sequence representation is summarized into a single vector, typically by 
selecting the representation corresponding to a special “classification token”.zcls.  This
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vector is then passed through a fully connected layer to produce the final classification 
logits: 

. y = softmax (Wclszcls + bcls) ,

where .Wcls and .bcls are the weights and biases of the classification head, and . y
represents the predicted probabilities for each class. The classification head ensures 
that the entire image representation is mapped into a discrete probability distribution 
over the target classes. This mapping is consistent with the global structure captured 
by the transformer encoders. 

6.2 Applications in Computer Vision 

ViTs have shown significant potential in various computer vision tasks, including 
image classification and object detection. This section explores the application of 
ViTs in these areas, focusing on the mathematical foundations of dataset preparation, 
model training, and evaluation metrics. By understanding these aspects, we gain 
deeper insights into the practical deployment of ViTs in real-world vision tasks. 

6.2.1 Image Classification 

Image classification is one of the primary applications of vision transformers. The 
process involves preparing the dataset, training the model, and evaluating its perfor-
mance using various metrics. This subsection delves into the mathematical details of 
each step, ensuring a thorough understanding of how ViTs are applied to classification 
tasks. 

Dataset Preparation 

Dataset preparation is the foundation of any successful image classification task. It 
involves curating and preprocessing the data to ensure that it is suitable for training 
a vision transformer model. 

Let .D = {(Ii , yi )}Mi=1 represent the dataset, where .Ii ∈ R
H×W×C is an image, 

.yi ∈ {1, 2, . . . , K } is the corresponding label, and.M is the total number of samples. 
The dataset preparation involves the following steps: 

1. Each image. Ii is normalized to have zero mean and unit variance, ensuring that 
the pixel values are centered and scaled appropriately: 

.I′i = Ii − μ

σ
,
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where . μ and . σ are the mean and standard deviation of the pixel values, computed 
across the entire dataset. 

2. Data augmentation is applied to increase the diversity of the training data 
by creating transformed versions of the original images. Common transformations 
include rotations, flips, and color jittering: 

. T (Ii ) = Augment(Ii ),

where .T represents the augmentation transformation applied to the image . Ii . 
Data augmentation increases the effective size of the training dataset, reducing 

overfitting and improving the model’s ability to generalize to unseen data. Formally, 
let .Daug represent the augmented dataset. Then, the generalization error .Egen of the 
model trained on .Daug is expected to be lower than that of a model trained on the 
original dataset . D: 

. Egen(Daug) < Egen(D).

Example: For a dataset like CIFAR-10, normalization ensures that all images have 
consistent pixel value distributions, while data augmentation introduces variations 
that help the model learn more robust features. 

Training ViT Models 

Training a vision transformer involves optimizing the model’s parameters using a 
labeled dataset, typically through a gradient-based optimization method. The process 
is guided by a loss function that measures the discrepancy between the model’s 
predictions and the true labels. 

Let . θ represent the parameters of the vision transformer model. The goal of 
training is to minimize the loss function .L(θ), which is typically the cross-entropy 
loss for classification tasks: 

. L(θ) = − 1

M

M∑
i=1

K∑
k=1

1{yi = k} log P(yi = k | Ii ; θ),

where .P(yi = k | Ii ; θ) is the probability that the model assigns to class . k given 
image . Ii , and .1{·} is the indicator function. 

Optimization: The parameters . θ are updated iteratively using gradient descent: 

. θ ← θ − η∇θL(θ),

where . η is the learning rate and .∇θL(θ) is the gradient of the loss function with 
respect to the model parameters.
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Under appropriate conditions on the learning rate. η and the smoothness of the loss 
function .L(θ), gradient descent converges to a local minimum of the loss function, 
leading to a model that performs well on the training data. 

Example: In training a vision transformer on the ImageNet dataset, the cross-
entropy loss guides the model to adjust its parameters so that the predicted class 
probabilities match the true labels as closely as possible. 

Evaluation Metrics (Accuracy, Precision, Recall) 

Evaluating the performance of a vision transformer model involves measuring how 
well the model’s predictions align with the true labels. Common evaluation metrics 
include accuracy, precision, and recall. 

Given a test set .Dtest = {(Ii , yi )}Ni=1, where .N is the number of test samples, the 
following metrics are defined: 

1. Accuracy measures the proportion of correct predictions: 

. Accuracy = 1

N

N∑
i=1

1{ŷi = yi },

where .ŷi is the predicted label for image . Ii . 
2. Precision measures the proportion of correctly predicted positive instances 

among all predicted positive instances for a given class . k: 

. Precision(k) =
∑N

i=1 1{ŷi = k and yi = k}∑N
i=1 1{ŷi = k} .

3. Recall measures the proportion of correctly predicted positive instances among 
all actual positive instances for a given class . k: 

. Recall(k) =
∑N

i=1 1{ŷi = k and yi = k}∑N
i=1 1{yi = k} .

There is often a trade-off between precision and recall. High precision may come 
at the cost of lower recall and vice versa. The F1-score is a metric that combines 
both: 

. F1-score(k) = 2 · Precision(k) · Recall(k)
Precision(k) + Recall(k)

.

Example: When evaluating a vision transformer on the CIFAR-100 dataset, accu-
racy gives a general measure of performance, while precision and recall provide more 
detailed insights into how well the model distinguishes between different classes.
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6.2.2 Object Detection 

Object detection extends image classification by not only identifying the class of 
objects in an image but also localizing them within the image using bounding boxes. 
Applying vision transformers to object detection requires adapting the model to 
output both class labels and bounding box coordinates. 

Let . I be an input image containing .m objects, each represented by a class label 
.y j and a bounding box .b j = (x j , y j , w j , h j ), where .(x j , y j ) is the center of the 
bounding box, and.(w j , h j ) are the width and height. The goal of object detection is 
to predict these labels and bounding boxes. 

The vision transformer can be adapted to object detection by introducing addi-
tional prediction heads that output the bounding box coordinates and class labels for 
each detected object: 

. zdet = MHSA(X′) + FFN(zcls),

where.zdet is the detection token output, which is then passed through separate heads 
for class prediction and bounding box regression. 

The loss function for object detection typically combines a classification loss (e.g., 
cross-entropy) with a bounding box regression loss (e.g., smooth .L1): 

. Ldet(θ) = Lcls(θ) + λLbbox(θ),

where . λ balances the two components of the loss. 
Bounding box regression aims to minimize the difference between the predicted 

and true bounding box coordinates. The smooth.L1 loss for bounding box regression 
is defined as 

. Lbbox(θ) =
m∑
j=1

smoothL1(b j , b̂ j ),

where .b̂ j are the predicted bounding box coordinates. 
Example: In tasks like COCO object detection, vision transformers can be trained 

to accurately detect and localize multiple objects within an image, outputting both 
class predictions and bounding box coordinates for each object. 

Transformer-Based Detection Models (DETR) 

Detection Transformers (DETR) ( [ 1]) represent a novel approach to object detection 
that leverages the power of transformers to directly predict object bounding boxes 
and class labels from an input image. Unlike traditional detection models that rely on 
region proposal networks and non-maximum suppression, DETR uses a set-based 
global loss to handle object detection as a direct set prediction problem. 

Let . I be an input image, and let .{(bi , yi )}Ni=1 be the set of .N predicted objects, 
where .bi = (xi , yi , wi , hi ) is the bounding box and .yi is the class label for the .i-th
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object. The DETR model consists of an encoder–decoder transformer architecture, 
where the encoder processes the image features and the decoder generates object 
predictions. 

1. Object Queries: The decoder operates on a fixed set of learned object queries 
.Q ∈ R

N×D , where.N is the number of objects to predict, and.D is the dimensionality 
of the query embeddings. Each query corresponds to a potential object in the image. 

. Q′ = Decoder(Q,E),

where . E represents the encoded image features. 
2. Set-based Prediction: DETR directly predicts a set of bounding boxes and 

class labels from the decoder outputs. The predictions .{(b̂i , ŷi )}Ni=1 are matched to 
the ground truth objects .{(b j , y j )}Mj=1 using a bipartite matching loss, ensuring a 
one-to-one correspondence: 

. LDETR(b̂, ŷ;b, y) =
N∑
i=1

[
Lcls(ŷi , yσ(i)) + Lbbox(b̂i ,bσ(i))

]
,

where .σ is the optimal assignment that minimizes the total loss, .Lcls is the 
classification loss, and .Lbbox is the bounding box regression loss. 

The optimal assignment. σ is found by minimizing the total matching cost, ensur-
ing that each predicted object is uniquely paired with a ground truth object. The 
bipartite matching ensures that the model predicts the correct number of objects and 
accurately locates them within the image. 

Example: In the COCO dataset ([ 4]), DETR effectively predicts bounding boxes 
and class labels for multiple objects within an image, handling complex scenes with 
overlapping objects without relying on traditional post-processing techniques. 

Evaluation Metrics (mAP, IOU) 

Evaluating the performance of object detection models like DETR involves metrics 
that quantify both the localization accuracy and the classification correctness of the 
detected objects. 

1. Intersection over Union (IoU): The IoU metric measures the overlap between 
the predicted bounding box . b̂ and the ground truth bounding box . b. It is defined as 

. IoU(b̂,b) = Area(b̂ ∩ b)

Area(b̂ ∪ b)
.

IoU is used to determine whether a predicted bounding box is a true positive (IoU 
above a threshold, typically 0.5) or a false positive.
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2. Mean Average Precision (mAP): The mAP metric summarizes the precision– 
recall curve for all classes. It is computed as the mean of the average precision (AP) 
scores across all classes: 

. mAP = 1

K

K∑
k=1

AP(k),

where .K is the number of classes and .AP(k) is the area under the precision–recall 
curve for class . k. 

The mAP metric is sensitive to the IoU threshold. Higher IoU thresholds typically 
lead to lower mAP scores, as they require more precise localization of objects. 

Example: When evaluating DETR on a dataset like Pascal VOC, mAP at different 
IoU thresholds (e.g., 0.5, 0.75) provides insights into the model’s ability to accurately 
detect and localize objects across various classes. 

6.2.3 Image Generation 

Beyond object detection, vision transformers can also be applied to image generation 
tasks, often in combination with Generative Adversarial Networks (GANs) ([ 3]). 
Integrating transformers with GANs leverages the transformer’s ability to model 
long-range dependencies and the GAN’s capability to generate high-quality images. 

Generative Adversarial Networks (GANs) with Transformers 

In a GAN, two neural networks—the generator .G and the discriminator . D—are 
trained simultaneously. The generator aims to produce realistic images from random 
noise, while the discriminator attempts to distinguish between real and generated 
images. When combined with transformers, the architecture can effectively model 
complex dependencies in image data. 

1. Generator: The generator network.G maps a random noise vector.z ∼ p(z) to a 
generated image.Î = G(z). When using transformers, the generator can incorporate 
self-attention mechanisms to model global image structures. 

. Î = TransformerDecoder(z,E),

where . E represents the learned embeddings from an encoder. 
2. Discriminator: The discriminator network .D assigns a probability .D(I) to an 

image . I, indicating whether it is real or generated. The discriminator’s goal is to 
maximize the probability of correctly identifying real images while minimizing the 
probability for generated ones. 

.LD = −EI∼pdata [log D(I)] − EÎ∼pG
[log(1 − D(Î))].
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The training of GANs is formulated as a minimax game between the generator 
and discriminator: 

. minG max
D

LD(G, D).

The equilibrium of this game corresponds to the generator producing images that 
are indistinguishable from real images by the discriminator. 

Example: Transformers integrated with GANs have been applied to tasks like 
image super-resolution and text-to-image generation, where the transformer captures 
complex patterns and dependencies, leading to more realistic and coherent images. 

ViT for Image Synthesis 

Image synthesis involves generating new images from scratch or from certain inputs, 
such as noise vectors or textual descriptions. Vision transformers, with their ability to 
model global dependencies and capture complex patterns, can be effectively utilized 
for this purpose, particularly in generating high-resolution images with coherent 
structures. 

Let .z ∈ R
d be a random noise vector sampled from a distribution .p(z) (typically 

Gaussian), which serves as the input to the vision transformer-based generator. The 
generator .GViT maps this noise vector to a synthesized image . Î: 

. Î = GViT(z),

where .GViT is constructed using a transformer architecture that processes the noise 
vector through a series of attention layers, ultimately outputting an image. 

1. Patch Embedding in Synthesis: Similar to the ViT architecture for classifica-
tion, the generator splits the image into patches and processes them as a sequence. 
However, instead of classifying, the transformer layers are used to refine the latent 
representation until it resembles a real image: 

. p̂i = TransformerLayer(zi ),

where .p̂i is the synthesized patch after processing through the transformer layer. 
2. Reconstruction of Image: The sequence of patches is then concatenated and 

reshaped to form the synthesized image: 

. Î = Reshape([p̂1, p̂2, . . . , p̂N ]).

The expressivity of transformer-based generators allows them to capture and syn-
thesize complex image structures by modeling the global relationships between dif-
ferent parts of the image. The self-attention mechanism within the transformer lay-
ers enables the generator to produce images that are globally coherent and exhibit 
high-level structural consistency.
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Example: A ViT-based generator could be used for text-to-image synthesis, where 
the input noise vector . z is conditioned on textual descriptions. The transformer lay-
ers process this information, capturing the relationships between different elements 
described in the text and generating a coherent image that matches the description. 

Evaluation Metrics (FID, IS) 

Evaluating the quality of synthesized images is crucial for understanding the per-
formance of image synthesis models. Two commonly used metrics are the Fréchet 
inception distance and the inception score. 

1. Fréchet Inception Distance (FID): The FID metric compares the distribution 
of synthesized images to the distribution of real images by measuring the distance 
between their feature representations in a pre-trained inception network. Let . μr , �r

and.μg, �g be the means and covariances of the feature representations for real and 
generated images, respectively. The FID is defined as 

. FID(Xr ,Xg) = ‖μr − μg‖2 + Tr(�r + �g − 2(�r�g)
1/2),

where .Tr denotes the trace of a matrix. A lower FID score indicates that the distri-
bution of synthesized images is closer to the distribution of real images, implying 
higher quality and more realistic synthesis. 

2. Inception Score (IS): The inception score evaluates the quality of gener-
ated images based on the confidence of the inception network’s classification. It 
is computed as 

. IS(Xg) = exp
(
Ex∼Xg DKL(p(y | x)‖p(y))) ,

where .DKL is the Kullback–Leibler divergence, .p(y | x) is the conditional label 
distribution given the image. x, and.p(y) is the marginal distribution over all generated 
images. A high inception score indicates that the generated images are both diverse 
and high quality, as the network assigns them to specific classes with high confidence. 

Example: In assessing a ViT-based generator trained on the CIFAR-10 dataset, 
a low FID score would suggest that the generated images are similar to the real 
CIFAR-10 images, while a high IS would indicate that the images are diverse and 
correspond well to distinct classes within the dataset. 

6.2.4 Other Applications 

Vision transformers also find applications in other areas of computer vision, such 
as image segmentation and video analysis, where their ability to model long-range 
dependencies and capture global context proves advantageous.
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Image Segmentation 

Image segmentation involves partitioning an image into multiple segments, each 
corresponding to a different object or region. Vision transformers can be adapted for 
segmentation tasks by predicting a segmentation map instead of class labels. 

Given an input image . I, the goal is to predict a segmentation map . S, where each 
pixel .Si j belongs to a specific class. The vision transformer processes the image 
patches and outputs class logits for each patch, which are then upsampled to create 
a pixel-wise segmentation map: 

. S = Upsample([l1, l2, . . . , lN ]),

where . li represents the logits for the .i-th patch. 
The accuracy of segmentation is typically measured using the Intersection over 

Union (IoU) for each class, similar to object detection. Higher IoU scores indicate 
more accurate segmentation. 

Example: A vision transformer adapted for semantic segmentation on the Pas-
cal VOC dataset would generate a segmentation map where each pixel is labeled 
according to its corresponding object or region, such as “sky,” “car,” or “building.” 

Video Analysis 

Video analysis involves processing sequences of frames to extract meaningful infor-
mation, such as detecting actions, tracking objects, or summarizing content. Vision 
transformers can be extended to video analysis by processing each frame as a 
sequence of patches and modeling the temporal dependencies between frames. 

Let .V = {It }Tt=1 be a video sequence consisting of .T frames. Each frame .It is 
divided into patches, and the sequence of patch embeddings is processed by the 
vision transformer to capture both spatial and temporal dependencies: 

. Z = TransformerEncoder(X1,X2, . . . ,XT ),

where .Xt is the sequence of patch embeddings for frame . t . 
The self-attention mechanism within the transformer layers allows the model to 

maintain temporal coherence across frames, capturing the dynamics of objects and 
actions over time. 

Example: In video action recognition, a vision transformer could be used to clas-
sify actions such as “running” or “jumping” by analyzing the sequence of frames 
and identifying patterns that correspond to specific actions.
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6.3 Mathematical Analysis 

The success of ViTs in computer vision tasks is not only due to their powerful 
attention mechanisms but also their mathematical complexity. This section explores 
the time and space complexity of ViTs, providing a detailed comparison with tradi-
tional CNNs. By understanding the mathematical intricacies, we can appreciate the 
trade-offs involved in using ViTs and how they scale with different tasks. 

Model Complexity 

Model complexity plays a crucial role in determining the feasibility and efficiency 
of deploying vision transformers in real-world applications. This involves analyzing 
both the time and space complexity of the model, which directly impact the compu-
tational resources required for training and inference. 

Time Complexity of ViT 

The time complexity of vision transformers is primarily determined by the self-
attention mechanism, which is the most computationally expensive component of the 
model. Understanding this complexity requires a detailed analysis of the operations 
involved in computing the attention scores and aggregating the values. 

Given an input image.I ∈ R
H×W×C , the image is divided into.N = H×W

P2 patches, 
each of size.P × P . The time complexity of the self-attention mechanism in the ViT 
is as follows: 

1. Self-Attention Complexity: For each layer, the self-attention mechanism com-
putes attention scores between all pairs of patches. The complexity of computing the 
attention matrix . A is 

. TimeComplexityAttention = O(N 2 · D),

where .N is the number of patches and .D is the dimensionality of the embeddings. 
2. Feedforward Network Complexity: Each self-attention layer is followed by 

a feedforward network (FFN), which consists of two linear transformations and a 
non-linear activation. The time complexity of the FFN is 

. TimeComplexityFFN = O(N · D2).

The total time complexity of a vision transformer with . L layers is the sum of the 
time complexities of the self-attention and FFN across all layers: 

. TimeComplexityViT = O(L · (N 2 · D + N · D2)).

This expression shows that the self-attention mechanism dominates the time 
complexity, particularly as the number of patches .N increases.
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Example: For a ViT processing an image of size .224 × 224 with patch size 
.16 × 16, .N = 196 patches. If .D = 768 and the model has .L = 12 layers, the time 
complexity is dominated by the self-attention mechanism, scaling quadratically with 
the number of patches. 

Space Complexity 

Space complexity refers to the memory required to store the model parameters, inter-
mediate activations, and gradients during training. Vision transformers, with their 
large embedding dimensions and multi-head attention mechanisms, have significant 
space requirements. 

1. Parameter Space Complexity: The parameters of a ViT are primarily in the 
projection matrices for the query, key, value, and output in the self-attention layers, 
as well as the weights in the FFN. The space complexity for storing the parameters 
in a single layer is 

. SpaceComplexityParams = O(N · D2 + D2).

The total parameter space complexity for . L layers is 

. SpaceComplexityParamsTotal = O(L · (N · D2 + D2)).

2. Activation Space Complexity: During training, the model must store the activa-
tions for each layer, which are necessary for backpropagation. The space complexity 
for storing the activations is 

. SpaceComplexityActivations = O(L · N · D).

The total space complexity of a vision transformer is the sum of the space required 
for storing the parameters and the activations: 

. SpaceComplexityViT = O(L · (N · D2 + D2 + N · D)).

This expression indicates that the space complexity scales linearly with the number 
of layers and patches, making ViTs memory-intensive, particularly for large input 
images and deep models. 

Example: For the same ViT with.N = 196 patches,.D = 768, and.L = 12 layers, 
the space complexity is dominated by the storage of parameters and activations, 
requiring substantial memory resources during training. 

Comparison with CNNs 

CNNs have been the dominant architecture in computer vision for many years, and 
comparing the complexity of ViTs with CNNs provides insights into the trade-offs 
between these architectures.
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1. Time Complexity of CNNs: In CNNs, the time complexity is determined by the 
convolutional operations. For a convolutional layer with a filter size .F × F applied 
to an input of size .H × W × C , the time complexity is 

. TimeComplexityCNN = O(H · W · C · F2).

CNNs typically have linear time complexity with respect to the number of pixels in 
the input image. 

2. Space Complexity of CNNs: The space complexity in CNNs is determined by 
the number of filters and the size of the activations. For a layer with .K filters, the 
space complexity is 

. SpaceComplexityCNN = O(K · F2 · C + H · W · K ).

Vision Transformers have higher time complexity due to the quadratic scaling of 
the self-attention mechanism with respect to the number of patches. However, CNNs 
typically have lower space complexity due to the locality of convolutions, which 
reduces the number of parameters and intermediate activations. 

Example: Comparing a ViT with a ResNet-50 CNN on the same image size, 
the ViT may require more computational resources due to the attention mechanism, 
while the CNN may be more efficient in terms of both time and space complexity, 
particularly for lower resolution images. 

6.4 Optimization and Training Strategies 

The training and optimization of ViTs are crucial for achieving high performance 
on computer vision tasks. This section explores the mathematical foundations of 
loss functions, gradient descent and its variants, regularization techniques, and data 
augmentation strategies. These components are essential for guiding the learning 
process and ensuring that the model generalizes well to unseen data. 

The effectiveness of vision transformers depends on carefully designed optimiza-
tion strategies that ensure the model converges to a good solution during training. 
This involves selecting appropriate loss functions, optimizing the parameters using 
gradient-based methods, applying regularization to prevent overfitting, and aug-
menting the training data to improve generalization. 

Loss Functions 

The choice of loss function is fundamental to training a vision transformer, as it 
defines the objective that the model seeks to minimize. In classification tasks, the 
cross-entropy loss is commonly used, while in regression tasks, mean squared error 
or similar loss functions may be more appropriate.
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Let.D = {(Ii , yi )}Mi=1 be a dataset with.M samples, where. Ii is the input image, and 
.yi is the corresponding label. The model parameters . θ are optimized by minimizing 
a loss function .L(θ), defined as 

. L(θ) = − 1

M

M∑
i=1

K∑
k=1

1{yi = k} log P(yi = k | Ii ; θ),

where.P(yi = k | Ii ; θ) is the probability that the model assigns to class . k given the 
image . Ii and .1{·} is the indicator function. 

For binary classification problems, the cross-entropy loss is convex with respect to 
the model parameters, which ensures that gradient descent will converge to a global 
minimum if the model is linear. However, for non-linear models like vision trans-
formers, the loss landscape may contain multiple local minima, making optimization 
more challenging. 

Example: For a ViT trained on the CIFAR-10 dataset, the cross-entropy loss 
guides the model to assign high probabilities to the correct classes for each image, 
minimizing the overall classification error. 

Regularization Techniques 

Regularization is critical for preventing overfitting, especially in large models like 
vision transformers, which have a vast number of parameters. Common regularization 
techniques include weight decay, dropout, and label smoothing. 

1. Weight decay (L2 regularization) adds a penalty to the loss function based 
on the magnitude of the model parameters, encouraging smaller weights and thus 
simpler models: 

. Lreg(θ) = L(θ) + λ‖θ‖22,

where . λ is the regularization strength. 
2. Dropout randomly sets a fraction of the activations to zero during training, 

preventing co-adaptation of neurons and improving generalization: 

. hdropout = h � m,

where . h is the vector of activations, .m is a binary mask with probability . p of being 
zero, and .� denotes element-wise multiplication. 

3. Label smoothing replaces the one-hot encoded labels with a smoothed 
distribution, reducing the model’s confidence in its predictions and improving 
generalization: 

. ỹk = (1 − ε)yk + ε

K
,

where . ε is the smoothing parameter and .K is the number of classes. 
Regularization techniques like weight decay, dropout, and label smoothing reduce 

the variance of the model, leading to improved generalization performance. These
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techniques are particularly effective in preventing overfitting in deep models like 
vision transformers. 

Example: For a ViT trained on the CIFAR-100 dataset, applying dropout with a 
rate of 0.1 and weight decay with .λ = 0.0005 can help prevent overfitting, leading 
to better performance on the test set. 

Data Augmentation Techniques 

Data augmentation is a powerful technique for increasing the effective size of the 
training dataset by generating new, slightly modified versions of the existing data. 
This helps the model generalize better by exposing it to a wider variety of data. 

Let .T represent a set of augmentation transformations, such as rotations, flips, 
and color jittering. The augmented dataset .Daug is generated by applying these 
transformations to the original dataset . D: 

. Daug = {(T (Ii ), yi ) | (Ii , yi ) ∈ D, T ∈ T }.

Data augmentation increases the diversity of the training data, reducing the risk of 
overfitting and improving the model’s generalization performance. The theoretical 
effect of data augmentation is to smooth the decision boundaries, making the model 
less sensitive to variations in the input data. 

Example: For a vision transformer trained on the SVHN dataset, applying data 
augmentation techniques like random cropping, horizontal flipping, and color jit-
tering can significantly improve the model’s robustness to variations in the input 
data. 

6.5 Advanced Topics and Future Directions 

ViTs have demonstrated exceptional performance in various computer vision tasks. 
However, the exploration of hybrid models that combine the strengths of CNNs and 
transformers offers a promising direction for further advancements. This section 
explores the mathematical formulation and principles behind hybrid models that 
integrate CNNs and transformers, providing insights into how these architectures 
leverage the advantages of both approaches. 

Hybrid Models 

Hybrid models aim to harness the localized feature extraction capabilities of CNNs 
along with the global attention mechanisms of transformers. This combination seeks 
to create architectures that are both computationally efficient and capable of captur-
ing complex dependencies across the input data. By combining these two powerful 
paradigms, hybrid models can potentially outperform either CNNs or transformers 
alone on a wide range of tasks.
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Combining CNNs and Transformers 

The core idea behind hybrid models is to use CNNs to extract local features from the 
input data, which are then processed by transformers to capture long-range depen-
dencies and contextual relationships. This approach allows for the benefits of convo-
lutional operations in handling high-resolution data and the strengths of self-attention 
in modeling global interactions. 

1. CNN Feature Extraction: Given an input image .I ∈ R
H×W×C , a CNN is first 

applied to extract a set of feature maps .F ∈ R
H ′×W ′×C ′

, where .H ′ and .W ′ are the 
spatial dimensions after downsampling, and .C ′ is the number of output channels: 

. F = CNN(I).

The CNN typically consists of multiple convolutional layers, each followed by non-
linear activations and pooling operations, which reduce the spatial dimensions and 
increase the feature depth. 

2. Transformer Processing: The extracted feature maps are then reshaped into a 
sequence of tokens suitable for processing by a transformer. Let.X ∈ R

N×D represent 
the sequence of tokens, where.N = H ′ × W ′ is the number of tokens and.D = C ′ is 
the token dimensionality: 

. X = Reshape(F).

These tokens are then passed through a series of transformer layers, where each layer 
applies self-attention to model the interactions between different parts of the image: 

. Z = TransformerEncoder(X),

where .Z ∈ R
N×D is the output of the transformer encoder. 

The hybrid model benefits from the computational efficiency of CNNs in early 
layers, where local features are most important, and the expressive power of trans-
formers in later layers, where capturing global context is crucial. Formally, let . TCNN
and.TTransformer denote the time complexities of the CNN and transformer components, 
respectively. The overall time complexity of the hybrid model is 

. THybrid = TCNN + TTransformer.

This formulation shows that the hybrid model can be more efficient than a 
pure transformer model, especially when the CNN effectively reduces the spatial 
dimensions before passing the features to the transformer. 

Example: In a hybrid architecture designed for image classification on the Ima-
geNet dataset, the CNN component might consist of several convolutional layers 
followed by pooling, reducing the image resolution to .14 × 14 patches, which are 
then processed by a vision transformer. This combination allows the model to lever-
age the CNN’s ability to capture fine details and the transformer’s capability to model 
global relationships.
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The formulation of hybrid models involves defining the interaction between the 
CNN and transformer components, particularly how features are extracted, trans-
formed, and integrated. The key challenge is to ensure that the information flows 
seamlessly from the convolutional layers to the self-attention layers without losing 
critical spatial information. 

1. Feature Extraction and Tokenization: The feature maps. F extracted by the CNN 
are tokenized by reshaping them into a sequence. X. The tokens.xi ∈ R

D correspond 
to different spatial regions of the image and are enriched with local features from the 
CNN: 

. X = [x1, x2, . . . , xN ], xi = Flatten(Fi ),

where .Fi represents the .i-th feature map region. 
2. Self-Attention Mechanism: The tokens .X are processed by the self-attention 

mechanism in the transformer, which computes attention scores between all pairs of 
tokens to capture global dependencies: 

. A = softmax

(
QKT

√
D

)
,

where .Q,K, andV are the query, key, and value matrices derived from. X. 
3. Output Integration: The output of the transformer encoder . Z is reshaped and 

combined with any residual CNN features to produce the final prediction . ŷ: 

. ŷ = Classifier(Z).

The combination of CNN and transformer layers preserves both local and global 
information, enabling the model to make more informed predictions. Let .Ilocal and 
.Iglobal denote the local and global information captured by the CNN and transformer, 
respectively. The total information .Itotal preserved by the hybrid model is 

. Itotal = Ilocal + Iglobal,

where .Ilocal is maximized by the CNN’s convolutional operations and .Iglobal is 
maximized by the transformer’s self-attention mechanism. 

Example: In a hybrid model designed for object detection, the CNN might extract 
detailed features like edges and textures, while the transformer captures the spatial 
relationships between different objects in the scene. This synergy allows the model 
to detect objects with high accuracy and robustness. 
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Chapter 7 
Time Series Forecasting 
with Transformers 

7.1 Mathematical Modeling of Sequential Data 

Time series forecasting involves predicting future values of a sequential data series 
based on its historical behavior. This section provides a mathematical exploration of 
traditional time series models, such as autoregressive (AR) models, moving average 
(MA) models, and their extensions, which lay the foundation for understanding 
how transformers can be applied to time series forecasting. The analysis will focus 
on the mathematical formulation of these models, highlighting their strengths and 
limitations, and motivating the use of more advanced techniques like transformers. 

7.1.1 Time Series Representation 

Time series data is a sequence of observations collected over time, where each obser-
vation .yt at time . t depends on previous observations. Formally, a time series can be 
represented as .{yt }Tt=1, where .T is the length of the series. The goal of time series 
modeling is to capture the underlying structure and dependencies within the series 
to make accurate predictions about future observations. 

Autoregressive Models 

Autoregressive (AR) models are a fundamental class of time series models where 
the current value of the series is expressed as a linear combination of its previous 
values. An AR model of order . p, denoted as AR(. p), assumes that the value at time 
. t depends on the previous . p values: 

. yt = φ1yt−1 + φ2yt−2 + · · · + φp yt−p + εt ,
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where.φ1, φ2, . . . , φp are the autoregressive coefficients and. εt is a white noise error 
term with zero mean and constant variance .σ 2. 

An AR(. p) model is stationary if the roots of the characteristic equation 

. 1 − φ1z − φ2z
2 − · · · − φpz

p = 0

lie outside the unit circle in the complex plane. Stationarity implies that the statistical 
properties of the time series, such as mean and variance, do not change over time, 
making the model suitable for forecasting. 

Example: Consider a simple AR(1) model.yt = φ1yt−1 + εt .The stationarity con-
dition for this model is .|φ1| < 1. If this condition is satisfied, the series will revert to 
its mean over time, and predictions will be more stable. 

AR, MA, and ARMA Models 

While AR models rely on past values of the series, MA models express the current 
value as a linear combination of past error terms. An MA model of order . q, denoted 
as MA(. q), is given by 

. yt = εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q ,

where .θ1, θ2, . . . , θq are the moving average coefficients. 
An MA(. q) model is invertible if the roots of the characteristic equation 

. 1 + θ1z + θ2z
2 + · · · + θq z

q = 0

lie outside the unit circle in the complex plane. Invertibility ensures that the MA 
model can be uniquely represented as an infinite AR model, providing stability in 
forecasting. 

The autoregressive moving average (ARMA) model combines the AR and MA 
models to capture both the autoregressive and moving average components in the 
time series. An ARMA(.p, q) model is defined as 

. yt = φ1yt−1 + · · · + φp yt−p + εt + θ1εt−1 + · · · + θqεt−q .

An ARMA(.p, q) model is both stationary and invertible if the roots of the 
respective AR and MA characteristic equations lie outside the unit circle. This 
dual condition ensures that the model is well behaved and suitable for long-term 
forecasting. 

Example: In financial time series, ARMA models are often used to capture both 
short-term dependencies (via the AR component) and shocks or noise (via the MA 
component), leading to more accurate predictions.
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ARIMA and Seasonal ARIMA 

The autoregressive integrated moving average (ARIMA) model ([ 2]) extends 
ARMA to handle non-stationary time series by introducing a differencing step. An 
ARIMA(.p, d, q) model is defined as 

. �d yt = φ1�
d yt−1 + · · · + φp�

d yt−p + εt + θ1εt−1 + · · · + θqεt−q ,

where .�d yt represents the .d-th differenced series used to achieve stationarity. 
For an ARIMA(.p, d, q) model, if the differencing order . d is chosen such that 

the differenced series .{�d yt } is stationary, then the ARIMA model can be used to 
forecast the original non-stationary series. 

Seasonal ARIMA (SARIMA) ([ 8]) models extend ARIMA to capture seasonal 
patterns in the data. A SARIMA(.p, d, q × P, D, Q, s) model incorporates both non-
seasonal (.p, d, q) and seasonal (.P, D, Q, s) components, where . s is the seasonal 
period. The model is given by 

. �(Bs)�D
s �d yt = �(Bs)εt ,

where .�(Bs) and .�(Bs) are the seasonal AR and MA polynomials, respectively, 
and .�D

s represents seasonal differencing. 
A SARIMA model is stationary and invertible if both the non-seasonal and sea-

sonal components satisfy their respective stationarity and invertibility conditions. 
This ensures that the model can capture complex seasonal patterns while maintaining 
stability. 

Example: In weather forecasting, SARIMA models are used to predict temperature 
or precipitation by accounting for both daily fluctuations and seasonal cycles, such 
as summer and winter patterns. 

7.1.2 Time Series Representation 

Recurrent models form a critical class of methods for modeling sequential data, par-
ticularly time series. Unlike traditional autoregressive models, which rely on a fixed 
number of past observations, recurrent models introduce a more flexible approach by 
maintaining a hidden state that evolves over time, capturing dependencies of arbitrary 
length. This section explores the mathematical foundations of RNNs ([ 5, 10]), Long 
Short-Term Memory (LSTM) networks ([ 7]), and Gated Recurrent Units (GRUs) 
([ 3]), emphasizing their structure, dynamics, and the specific problems they address.
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Recurrent Neural Networks 

RNNs are a class of neural networks specifically designed for processing sequential 
data. The key idea behind RNNs is the incorporation of a hidden state that is updated 
at each time step, allowing the network to maintain a memory of previous inputs. 

Given an input sequence.{xt }Tt=1, where. xt is the input at time. t , an RNN computes 
the hidden state .ht and output .yt at each time step using the following recursive 
equations: 

. ht = σh(Whxt +Uhht−1 + bh),

. yt = σy(Wyht + by),

where .ht ∈ R
n is the hidden state at time . t , .Wh ∈ R

n×m and .Uh ∈ R
n×n are weight 

matrices for the input and hidden state, respectively; .bh ∈ R
n and .by ∈ R

o are bias 
vectors; and.σh and.σy are activation functions, typically.tanh or.ReLU for the hidden 
state and softmax for the output. 

RNNs are prone to the vanishing and exploding gradient problems during back-
propagation through time (BPTT). This issue arises because the gradient of the loss 
with respect to the hidden state at an earlier time step. t involves the product of many 
Jacobian matrices: 

. 
∂L
∂ht

=
T∑

k=t+1

∂L
∂hk

k∏

j=t+1

∂h j

∂h j−1
.

If the eigenvalues of . ∂h j

∂h j−1
are not close to 1, the gradients can either vanish (if 

the eigenvalues are less than 1) or explode (if they are greater than 1). 
In tasks requiring long-term dependencies, such as predicting trends over a long 

horizon, standard RNNs may struggle due to vanishing gradients, leading to poor 
performance as the model fails to retain important information from earlier in the 
sequence. 

Long Short-Term Memory (LSTM) 

LSTM networks were introduced to address the limitations of RNNs, particularly 
the vanishing gradient problem. LSTMs introduce a more complex hidden state 
structure that includes gating mechanisms, allowing the network to learn when to 
forget previous information and when to update the hidden state. 

An LSTM unit consists of a cell state . ct and three gates: input gate . it , forget gate 
. ft , and output gate . ot . The dynamics of an LSTM are governed by the following 
equations: 

. ft = σ(W f xt +U f ht−1 + b f ),

.it = σ(Wi xt +Uiht−1 + bi ),
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. ot = σ(Woxt +Uoht−1 + bo),

. c̃t = tanh(Wcxt +Ucht−1 + bc),

. ct = ft � ct−1 + it � c̃t ,

. ht = ot � tanh(ct ),

where . ft , it , ot ∈ R
n are the forget, input, and output gates, respectively; . ct ∈ R

n

is the cell state; .c̃t ∈ R
n is the candidate cell state; .� denotes element-wise multi-

plication; . σ is the sigmoid activation function; and .tanh is the hyperbolic tangent 
function. 

LSTMs are designed to mitigate the vanishing gradient problem by controlling 
the flow of information through the cell state using the forget gate . ft . The gradient 
of the loss with respect to the cell state at time . t is 

. 
∂L
∂ct

= ∂L
∂ct+1

� ft+1 · (other terms),

where. ft+1 directly modulates the gradient flow, allowing LSTMs to maintain long-
term dependencies. 

LSTMs excel in tasks where long-term memory is crucial, such as language mod-
eling or time series forecasting with long periodic patterns. For example, in financial 
forecasting, LSTMs can capture trends over long periods, such as yearly cycles in 
stock prices. 

Gated Recurrent Units (GRUs) 

GRUs are a simplified variant of LSTMs, introduced to reduce the complexity while 
retaining the advantages of gating mechanisms. GRUs combine the forget and input 
gates into a single update gate and eliminate the separate cell state, directly using the 
hidden state to carry information. 

The GRU dynamics are governed by the following equations: 

. zt = σ(Wzxt +Uzht−1 + bz),

. rt = σ(Wrxt +Urht−1 + br ),

. h̃t = tanh(Whxt +Uh(rt � ht−1) + bh),

. ht = (1 − zt ) � ht−1 + zt � h̃t ,

where.zt ∈ R
n is the update gate,.rt ∈ R

n is the reset gate, and.h̃t ∈ R
n is the candidate 

hidden state.
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While GRUs and LSTMs both address the vanishing gradient problem through 
gating mechanisms, GRUs have fewer parameters and are computationally more effi-
cient. This can lead to faster training and inference times, particularly in applications 
where model size and computational resources are a concern. The key difference lies 
in the structure of the gates, with GRUs using fewer gates to control the information 
flow. 

GRUs are often preferred in real-time applications, such as anomaly detection 
in streaming data, where computational efficiency is critical. Despite their simpler 
structure, GRUs can perform comparably to LSTMs on many tasks, particularly 
when the training data is limited. 

7.1.3 Transformers for Time Series 

Transformers, originally developed for natural language processing tasks, have 
proven to be powerful models for sequential data, including time series. Their abil-
ity to model long-range dependencies through attention mechanisms, rather than 
relying on recurrent structures, makes them particularly suitable for time series fore-
casting, where capturing both short-term and long-term dependencies is crucial. 
This section explores the application of transformers to time series data, focusing 
on the sequence-to-sequence framework, the encoder–decoder architecture, and the 
modeling of temporal dependencies using attention. 

Sequence-to-Sequence Models 

Sequence-to-sequence (Seq2Seq) models are designed to map an input sequence to 
an output sequence, making them well suited for tasks like time series forecasting. 
In the context of time series, the input sequence consists of past observations and the 
output sequence consists of future predictions. 

Let .x = {x1, x2, . . . , xT } be the input sequence of observed values and . y =
{y1, y2, . . . , yT ′ } be the output sequence of predicted values. A Seq2Seq model aims 
to learn a mapping . f : RT → R

T ′
such that 

. y = f (x),

where. f is typically parameterized by a deep neural network, such as a transformer. 
The goal is to minimize a loss function.L(y, ŷ) that quantifies the difference between 
the predicted sequence . ŷ and the true sequence . y. 

Given sufficient capacity (number of layers, hidden units, etc.), a transformer-
based Seq2Seq model can approximate any continuous mapping from the input 
sequence. x to the output sequence. y. This is a consequence of the universal approxi-
mation theorem, which states that neural networks can approximate any continuous 
function to arbitrary accuracy.
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Example: In time series forecasting, a Seq2Seq model might take a sequence of 
daily temperatures as input and predict the temperature for the next week. The model 
learns to capture both short-term patterns (e.g., daily fluctuations) and long-term 
trends (e.g., seasonal variations). 

Encoder–Decoder Framework 

The encoder–decoder framework is a common architecture used in Seq2Seq models, 
particularly in transformers. The encoder processes the input sequence and encodes 
it into a fixed-dimensional representation, while the decoder takes this representation 
and generates the output sequence. 

Let .H = {h1, h2, . . . , hT } represent the sequence of hidden states produced by 
the encoder, where each .ht encodes information from the input sequence up to time 
. t . The decoder generates the output sequence .ŷ = {ŷ1, ŷ2, . . . , ŷT ′ } as follows: 

. ŷt = g(hT , y<t ),

where . g is the decoding function that generates the prediction .ŷt based on the final 
encoder state .hT and the previous outputs .y<t . 

The effectiveness of the encoder–decoder framework relies on the encoder’s abil-
ity to compress the entire input sequence into a fixed-dimensional representation.hT . 
This compression can lead to an information bottleneck, where critical information 
about the input sequence is lost. However, the attention mechanism in transformers 
alleviates this issue by allowing the decoder to attend to different parts of the input 
sequence dynamically. 

Example: In machine translation, the encoder might process an entire sentence in 
the source language and produce a context vector .hT that encapsulates the meaning 
of the sentence. The decoder then generates the translated sentence in the target 
language, one word at a time, using this context vector. 

Temporal Dependencies and Attention 

One of the key strengths of transformers is their ability to model temporal dependen-
cies in sequential data through the self-attention mechanism. Unlike recurrent mod-
els, which process the sequence step by step, transformers use attention to consider 
all time steps simultaneously, capturing dependencies of varying lengths effectively. 

The self-attention mechanism computes a weighted sum of the input sequence, 
where the weights are determined by the similarity between the elements of the 
sequence. For an input sequence .x = {x1, x2, . . . , xT }, the attention score between 
elements .xi and .x j is given by
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. αi j =
exp

(
qik�

j√
dk

)

∑T
j ′=1 exp

(
qik�

j ′√
dk

) ,

where.qi = xiWQ , .k j = x jWK , and.dk is the dimensionality of the keys. The output 
for each position . i is then 

. zi =
T∑

j=1

αi jv j ,

where .v j = x jWV is the value associated with . x j . 
The self-attention mechanism in transformers allows the model to capture both 

local and global dependencies within the input sequence. Formally, the attention 
mechanism can express any dependency structure within the sequence, making 
transformers highly flexible for modeling complex temporal relationships. 

Example: In time series forecasting, self-attention enables the model to focus 
on important time steps that are relevant for making accurate predictions, such as 
previous peaks or trends in the data. This allows the model to learn complex temporal 
patterns, such as seasonality or trends, without relying on recurrent connections. 

Attention Mechanisms in Time Series 

The ability to model dependencies across different time steps is crucial for accurate 
time series forecasting. Attention mechanisms, and specifically self-attention, enable 
transformers to weigh the importance of each time step in the input sequence when 
making predictions, thereby capturing both local and global patterns. 

In a standard self-attention mechanism, the input sequence . x = {x1, x2, . . . , xT }
is transformed into queries . Q,  key  s  . K, and values . V using learned weight matrices 
.WQ , .WK , and .WV : 

. Q = XWQ, K = XWK , V = XWV ,

where .X ∈ R
T×d is the matrix representation of the input sequence, with .T as the 

sequence length and . d as the dimensionality of each time step. The self-attention 
output for each time step . t is computed as 

. zt =
T∑

j=1

αt jv j ,

where the attention weights .αt j are given by 

.αt j =
exp

(
qtk�

j√
dk

)

∑T
j ′=1 exp

(
qtk�

j ′√
dk

) .
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The self-attention mechanism is capable of capturing dependencies across all time 
steps in the input sequence. This means that the model can learn to focus on relevant 
past observations, regardless of their distance in time, making it particularly powerful 
for time series forecasting where both short-term and long-term dependencies are 
important. 

Example: In financial time series, self-attention can allow the model to weigh 
recent market trends more heavily while also taking into account significant events 
from the past, such as economic reports, that may influence future trends. 

Self-Attention in Sequential Data 

Self-attention in sequential data offers the advantage of parallelizing the computa-
tion across all time steps, in contrast to recurrent models, which process sequences 
sequentially. This parallelization not only speeds up computation but also allows the 
model to capture complex interactions between time steps that might be difficult to 
learn with recurrent structures. 

Given the self-attention mechanism described above, the parallel computation 
across all time steps is expressed as 

. Z = softmax

(
QK�
√
dk

)
V,

where .Z ∈ R
T×d is the matrix of attention outputs for all time steps. The softmax 

operation ensures that the attention weights for each time step sum to one, thereby 
normalizing the contribution of each value . v j . 

The parallel nature of self-attention allows the model to compute the interactions 
between all pairs of time steps simultaneously. This parallelization reduces the com-
putational complexity from .O(T 2 × d) for each time step to .O(T 2 × d) overall, 
making it significantly more efficient than recurrent models for long sequences. 

Example: In time series forecasting for large datasets, such as predicting energy 
consumption across a grid, the parallelization of self-attention enables the model 
to handle very long sequences efficiently, capturing interactions across different 
timescales. 

Multi-head Attention for Temporal Data 

Multi-head attention extends the self-attention mechanism by applying it multiple 
times in parallel, with different sets of learned weights for each head. This allows the 
model to capture different aspects of the temporal data simultaneously, improving 
its ability to model complex patterns. 

In multi-head attention, the input sequence. x is processed by. h different attention 
heads, each with its own set of weight matrices.W (i)

Q ,W (i)
K ,W (i)

V for .i = 1, 2, . . . , h.
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The output of each head is 

. z(i)
t =

T∑

j=1

α
(i)
t j v(i)

j ,

where.α
(i)
t j and.v(i)

j are the attention weights and values for head. i . The outputs from 
all heads are concatenated and linearly transformed to produce the final output: 

. zt = WO

[
z(1)
t | z(2)

t | . . . | z(h)
t

]
,

where .WO is a learned weight matrix that combines the outputs of all heads. 
Multi-head attention increases the model’s capacity by allowing it to attend to 

different parts of the sequence simultaneously and to capture a richer set of relation-
ships within the data. The different heads can focus on different time steps or learn 
different patterns, leading to a more comprehensive understanding of the temporal 
data. 

Example: In weather forecasting, multi-head attention can enable the model to 
simultaneously capture short-term fluctuations (e.g., daily temperature changes) and 
long-term trends (e.g., seasonal variations), leading to more accurate predictions. 

Positional Encoding for Time Series 

Since transformers lack an inherent sense of the order of the input sequence, positional 
encoding is crucial for allowing the model to capture temporal information. Positional 
encoding adds information about the position of each time step to the input data, 
enabling the model to differentiate between time steps in the sequence. 

Positional encodings are added to the input embeddings to incorporate information 
about the relative or absolute position of each time step. For a time step . t ,  the  
positional encoding .PE(t) is typically defined as 

. PE(t, 2i) = sin

(
t

100002i/d

)
, PE(t, 2i + 1) = cos

(
t

100002i/d

)
,

where. d is the dimensionality of the input embeddings and. i indexes the dimensions. 
These sinusoidal functions ensure that the encodings are unique for each time step 
and that the relative distances between time steps are preserved. 

Positional encoding ensures that the model can distinguish between different time 
steps and understand the temporal order of the sequence. The sinusoidal functions 
used in positional encoding provide a smooth and continuous representation of time, 
which is crucial for capturing temporal dependencies in time series data. 

Example: In financial forecasting, positional encoding allows the transformer to 
recognize the order of daily stock prices, enabling it to capture trends and patterns 
that depend on the sequence of observations, such as momentum or reversal patterns.
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7.2 Applications in Forecasting 

Financial time series forecasting is a crucial area where the predictive power of 
transformers can be leveraged. Financial markets generate vast amounts of sequen-
tial data, such as stock prices, trading volumes, and volatility indices, all of which 
require sophisticated models to predict future trends accurately. This section exam-
ines the application of transformers to financial time series, focusing on stock price 
prediction, portfolio optimization, and volatility modeling. We will explore how the 
mathematical properties of transformers align with the specific challenges posed by 
financial data. 

7.2.1 Financial Time Series 

Financial time series are often characterized by non-stationarity, high volatility, 
and complex dependencies across different assets and time periods. Transformers, 
with their ability to model long-range dependencies and capture intricate temporal 
patterns, are well suited to tackle these challenges. The application of transform-
ers to financial time series involves understanding the underlying geometric and 
probabilistic structures of the data, and how these can be encoded into the model. 

Stock Price Prediction 

Stock price prediction involves forecasting the future prices of stocks based on his-
torical data. This is a fundamental problem in finance, with significant implications 
for trading strategies, risk management, and portfolio optimization. The challenge 
lies in capturing the complex, often non-linear dependencies between past prices and 
future movements. 

Let .{Pt }Tt=1 be the time series representing the closing prices of a stock over . T
trading days. The goal is to predict the future price.PT+h after a horizon. h, based on 
the past prices .{Pt }Tt=1. A transformer model can be trained to learn the mapping: 

. P̂T+h = f ({Pt }Tt=1),

where . f is a function parameterized by the transformer’s weights and .P̂T+h is the 
predicted price. 

Under the Efficient Market Hypothesis (EMH) ([ 6]), prices reflect all avail-
able information, making future price movements inherently unpredictable. How-
ever, empirical studies show that certain market inefficiencies and patterns, such as 
momentum or mean reversion, can be exploited for predictive modeling. The trans-
former, by capturing these patterns through attention mechanisms, can potentially 
identify and leverage these inefficiencies.
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Example: In practice, a transformer might be trained on historical price data from 
multiple stocks, allowing it to learn common patterns across different assets. By 
focusing attention on key historical events, such as earnings reports or macroeco-
nomic announcements, the model can make more informed predictions about future 
price movements. 

Portfolio Optimization 

Portfolio optimization involves selecting a combination of financial assets that max-
imizes expected return for a given level of risk, or, equivalently, minimizes risk for a 
given level of expected return. The challenge is to forecast the returns and covariances 
of the assets in the portfolio, often based on historical data. 

Let .r = {r1, r2, . . . , rn} be the vector of expected returns for . n assets and .� be 
the covariance matrix of these returns. The objective in mean-variance optimization 
is to find the portfolio weights .w = {w1, w2, . . . , wn} that solve 

. min
w

w��w − λw�r,

where . λ is a risk-aversion parameter. The role of the transformer in this context 
is to forecast . r and .� based on historical returns, enabling the optimization of the 
portfolio. 

Markowitz’s portfolio theory ([ 9]) states that for any given expected return .r�w, 
there exists a portfolio that minimizes risk, given by 

. w∗ = �−1r
r��−1r

.

By accurately forecasting returns and covariances using transformers, investors can 
construct optimal portfolios that align with their risk preferences. 

Example: A transformer model could be used to predict the next month’s returns 
for a set of stocks, taking into account both historical price data and relevant external 
factors such as interest rates or economic indicators. These predictions could then 
be fed into a portfolio optimization algorithm to determine the optimal allocation of 
capital. 

Volatility Modeling 

Volatility modeling is critical in finance, as it measures the degree of variation in 
asset prices and is directly related to risk. Accurate volatility forecasts are essential 
for pricing derivatives, managing risk, and making informed trading decisions. 

Let .σ 2
t represent the conditional variance of the returns . rt . A common model for 

volatility is the GARCH(1,1) model ([ 1]), given by
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. σ 2
t = α0 + α1r

2
t−1 + β1σ

2
t−1,

where .α0 > 0, .α1 ≥ 0, and .β1 ≥ 0 are parameters. The transformer can be used to 
model and forecast volatility by capturing the complex dependencies in the time 
series of returns, potentially incorporating additional factors such as trading volume 
or macroeconomic indicators. 

For the GARCH(1,1) model to be stationary, the sum of the coefficients . α1 + β1

must be less than 1. This ensures that the impact of past shocks on current volatility 
diminishes over time. 

Example: A transformer model could be trained to predict the next day’s volatility 
based on historical price and volume data. By accurately forecasting volatility, the 
model could assist in pricing options or in adjusting trading strategies to mitigate 
risk during periods of high market uncertainty. 

7.2.2 Weather Forecasting 

Weather forecasting relies on the analysis of historical meteorological data and 
the simulation of atmospheric dynamics to predict future weather conditions. This 
involves a combination of physical models, statistical methods, and machine learning 
techniques. Transformers, with their capacity to model sequential data and capture 
complex temporal patterns, offer a powerful approach to improving the accuracy and 
robustness of weather predictions. 

Short-Term Forecasting 

Short-term weather forecasting involves predicting weather conditions over a period 
ranging from a few hours to a few days. This is essential for planning daily activ-
ities, managing energy resources, and issuing early warnings for adverse weather 
conditions. 

Let .xt represent a vector of meteorological variables (e.g., temperature, pressure, 
humidity) at time . t . The objective in short-term forecasting is to predict the state of 
these variables at a future time.t + h, where. h is the forecast horizon. A transformer 
model can be trained to learn the mapping: 

. x̂t+h = f ({xt , xt−1, . . . , xt−k}),

where . k is the number of previous time steps considered and . f is parameterized 
by the transformer’s weights. The model predicts the future state .x̂t+h based on the 
sequence of past observations. 

The atmosphere is a chaotic system, meaning that small changes in initial condi-
tions can lead to vastly different outcomes over time. According to the Lorenz attrac-
tor model, the predictability of weather diminishes rapidly as the forecast horizon
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increases. However, within short-term horizons, deterministic models, such as trans-
formers, can provide reasonably accurate forecasts by capturing the local dynamics 
of the atmosphere. 

Example: In practice, a transformer might be trained on historical weather data to 
predict the next day’s temperature and precipitation levels. The model would capture 
both diurnal patterns and short-term weather phenomena, such as the passage of a 
cold front, leading to more accurate short-term forecasts. 

Long-Term Climate Predictions 

Long-term climate predictions involve forecasting climate variables over extended 
periods, ranging from months to decades. This is crucial for understanding cli-
mate change, planning infrastructure, and developing policies for environmental 
sustainability. 

Let .yt represent climate variables (e.g., average temperature, sea level, carbon 
dioxide concentration) over a long-term period. The goal is to predict the state of 
these variables at a future time .t + H , where .H could be several months or years 
ahead. A transformer model can be formulated to learn the mapping: 

. ŷt+H = g({yt , yt−1, . . . , yt−K }),

where .K is the number of previous time steps and . g is the function parameterized 
by the transformer. 

Climate data is often non-stationary, with trends and periodicities that evolve 
over time due to factors such as greenhouse gas emissions and volcanic activity. The 
Fourier decomposition theorem allows any periodic signal to be expressed as a sum 
of sinusoidal functions, which can be captured by transformers through positional 
encoding and attention mechanisms. 

Example: In long-term climate prediction, a transformer could be used to forecast 
global temperature anomalies based on historical data, including natural cycles such 
as the El Niño-Southern Oscillation (ENSO) and anthropogenic factors. The model 
would need to account for both seasonal variations and long-term trends, such as 
global warming. 

Extreme Weather Events Prediction 

Predicting extreme weather events, such as hurricanes, tornadoes, and heatwaves, is 
of paramount importance due to their significant impact on human life and property. 
These events are rare, but their prediction requires models that can capture sudden, 
non-linear changes in weather patterns. 

Let. zt represent indicators of extreme weather conditions (e.g., wind speed, atmo-
spheric pressure, temperature gradients). The goal is to predict the likelihood of an
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extreme event occurring within a future time window.[t, t + H ]. A transformer can 
model this as a probabilistic forecasting problem: 

. P̂(Et+H ) = p(zt+H | {zt , zt−1, . . . , zt−k}),

where.P̂(Et+H ) is the predicted probability of an extreme event. E occurring at time 
.t + H . 

Extreme Value Theory (EVT) ( [ 4]) provides a framework for modeling the tails of 
a distribution, which is essential for predicting rare events. The Generalized Extreme 
Value (GEV) distribution is often used to model the maximum or minimum of a large 
sample of independent random variables. Transformers can be integrated with EVT 
to enhance the prediction of extreme weather events by focusing on the distributional 
tails. 

Example: In the context of hurricane prediction, a transformer could be trained 
on historical hurricane data, including sea surface temperatures, wind shear, and 
atmospheric pressure, to predict the likelihood of hurricane formation and its potential 
intensity. The model could provide early warnings, allowing for better preparedness 
and risk management. 

7.2.3 Energy Demand Forecasting 

Energy demand forecasting is essential for efficient grid management, load balancing, 
and integrating renewable energy sources into the grid. Accurate forecasts help in 
minimizing costs, reducing waste, and ensuring a stable energy supply. 

Electricity Load Forecasting 

Electricity load forecasting involves predicting the future demand for electricity, 
which is crucial for energy providers to manage supply efficiently. The demand 
for electricity varies based on factors such as time of day, weather conditions, and 
socio-economic activities. 

Let .Lt represent the electricity load at time . t . The goal is to predict the future 
load .Lt+h over a horizon . h, based on historical load data and possibly exogenous 
variables such as temperature .Tt and day of the week .Dt . A transformer model can 
be formulated to learn the mapping: 

. L̂t+h = f ({Lt , Tt , Dt , . . . , Lt−k, Tt−k, Dt−k}),

where . k is the number of previous time steps considered and . f is the function 
parameterized by the transformer. 

Electricity load often exhibits strong seasonal patterns, both daily and weekly. 
The Fourier decomposition theorem allows the periodic components of the load
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to be captured and modeled by the transformer’s attention mechanism, particularly 
when combined with positional encoding. 

A transformer model might be trained on historical load data from a utility com-
pany, using temperature and calendar information as additional inputs. The model 
would be able to predict peak load times and help in optimizing energy distribution 
across the grid. 

Renewable Energy Production Forecasting 

Forecasting renewable energy production, particularly from sources like solar and 
wind, is critical for integrating these resources into the energy grid. The variability and 
intermittency of renewable energy sources pose significant challenges for accurate 
forecasting. 

Let .Et represent the energy produced by a renewable source (e.g., solar or wind) 
at time . t . The goal is to predict the future production .Et+h over a horizon . h, based 
on historical production data and exogenous variables such as solar irradiance. It and 
wind speed .Wt . A transformer model can learn the mapping: 

. Êt+h = g({Et , It , Wt , . . . , Et−k, It−k, Wt−k}),

where . g is the function parameterized by the transformer. 
Renewable energy production is highly intermittent and subject to uncertainties 

due to changing weather conditions. The transformer’s ability to capture long-range 
dependencies and integrate multiple data sources, such as weather forecasts, makes 
it well suited for this task. 

A transformer could be used to predict the output of a solar power plant by 
modeling the relationship between historical solar power output, current weather 
conditions, and forecasts of irradiance and cloud cover. This prediction helps in 
managing grid stability and planning energy storage. 

7.2.4 Healthcare Time Series 

In healthcare, time series data is generated continuously through patient monitoring 
systems and public health records. Accurate forecasting of patient conditions and 
disease outbreaks can significantly improve healthcare outcomes by enabling timely 
interventions and resource allocation.
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Patient Monitoring 

Patient monitoring involves continuously tracking vital signs and other health indi-
cators to detect early signs of deterioration or improvement. Time series models can 
predict future health states, allowing for proactive healthcare management. 

Let .Vt represent a vector of vital signs (e.g., heart rate, blood pressure, oxygen 
saturation) at time . t . The goal is to predict the patient’s future state .Vt+h over a 
horizon . h, based on past observations: 

. V̂t+h = h({Vt , Vt−1, . . . , Vt−k}),

where . h is a function parameterized by the transformer. 
Physiological signals often exhibit complex, non-linear dynamics and can be 

influenced by various factors such as medication, activity level, and environmental 
conditions. The transformer’s attention mechanism can model these dynamics by 
focusing on relevant time points in the patient’s history. 

Example: In an ICU setting, a transformer model could be trained to predict the 
likelihood of a patient experiencing a critical event, such as a heart attack, within 
the next few hours. By monitoring vital signs and identifying patterns indicative of 
deterioration, the model could provide early warnings to medical staff. 

Disease Outbreak Prediction 

Predicting disease outbreaks, such as influenza or COVID-19, involves analyzing 
time series data from various sources, including hospital records, social media, and 
environmental factors. Early prediction of outbreaks allows for timely public health 
interventions. 

Let .Dt represent the number of reported cases of a disease at time . t . The goal is 
to predict the number of cases .Dt+h over a horizon . h, based on historical case data 
and possibly other exogenous variables like temperature or mobility data: 

. D̂t+h = f ({Dt , Mt , Et , . . . , Dt−k, Mt−k, Et−k}),

where .Mt might represent mobility data and .Et environmental factors. 
Epidemiological models often rely on compartmental models (e.g., SIR) to 

describe the spread of diseases. Transformers can enhance these models by incor-
porating high-dimensional data and learning the complex dependencies between 
different variables that affect disease spread. 

Example: During the COVID-19 pandemic, transformer models could be used 
to predict future case counts based on historical data, mobility patterns, and pub-
lic health interventions. These predictions could inform decisions on lockdowns, 
resource allocation, and vaccination strategies.
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7.3 Advantages and Limitations of Transformers in Time 
Series 

Transformers have become a popular choice for modeling time series data due 
to their ability to capture long-range dependencies and handle complex temporal 
patterns. However, like any model, they come with their own set of advantages and 
limitations. This section examines the mathematical underpinnings of these strengths 
and weaknesses, providing a clear understanding of where transformers excel and 
where they may face challenges. 

Advantages of Transformers in Time Series 

1. Modeling Long-Range Dependencies: The self-attention mechanism at the heart of 
transformers allows them to effectively model long-range dependencies in time series 
data. Unlike recurrent models, which process sequences sequentially, transformers 
can directly attend to all time steps in the input sequence simultaneously. This parallel 
processing enables the capture of relationships between distant time points, which is 
crucial for many time series applications. For an input sequence.x = {x1, x2, . . . , xT }, 
the self-attention mechanism computes the output as 

. zt =
T∑

j=1

αt jv j ,

where the attention weights.αt j are determined by the similarity between the queries 
and keys, allowing the model to focus on relevant time points regardless of their 
position in the sequence. The self-attention mechanism enables the transformer to 
model non-local interactions within the sequence, providing a more comprehensive 
understanding of the data compared to models that rely solely on local context. 

2. Scalability and Parallelism: Transformers are highly scalable due to their par-
allel processing capabilities. This makes them suitable for large-scale time series 
datasets, where processing efficiency is critical. The ability to compute attention for 
all time steps in parallel leads to faster training times compared to sequential mod-
els like RNNs or LSTMs. The time complexity of the self-attention mechanism is 
.O(T 2 · d), where. T is the sequence length and. d is the dimensionality of the model. 
This contrasts with the .O(T · d2) complexity of LSTMs, where each time step is 
processed sequentially. The parallel computation of attention allows transformers to 
handle long sequences more efficiently, reducing the training time and enabling the 
use of larger datasets. 

3. Flexibility in Handling Multivariate Time Series: Transformers can easily han-
dle multivariate time series, where multiple variables are observed over time. The 
multi-head attention mechanism allows the model to focus on different aspects of 
the data simultaneously, making it well suited for complex, high-dimensional time 
series. In multivariate time series, the input can be represented as a matrix.X ∈ R

T×d ,
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where each row corresponds to a different time step and each column corresponds 
to a different variable. The multi-head attention mechanism processes this matrix as 

. Z(i) = softmax

(
Q(i)(K(i))�√

dk

)
V(i),

for each attention head . i . The multi-head attention mechanism allows transform-
ers to capture complex interactions between variables, providing a more detailed 
understanding of the underlying dynamics in multivariate time series. 

Example: In the context of energy demand forecasting, transformers can simulta-
neously model the interactions between temperature, humidity, and electricity load, 
capturing how these variables jointly influence future demand. 

Limitations of Transformers in Time Series 

1. Computational and Memory Complexity: Despite their scalability, transformers 
can be computationally and memory-intensive, particularly for long sequences. The 
quadratic complexity of the self-attention mechanism with respect to the sequence 
length. T can become a bottleneck, especially when. T is large. The memory require-
ment for self-attention scales as .O(T 2 · d), which can be prohibitive for long 
sequences or large batch sizes. This limits the practical application of transform-
ers in scenarios where resources are constrained. For sequences longer than a cer-
tain threshold, the memory requirements of transformers may exceed the avail-
able resources, necessitating the use of approximations or modifications to the 
self-attention mechanism. 

2. Need for Large Datasets: Transformers typically require large amounts of data to 
perform well. This is due to the large number of parameters in the model, which need 
sufficient data for effective training. In scenarios where data is limited, transformers 
may overfit or fail to generalize. The performance of transformers is directly related 
to the size of the training dataset. In the low-data regime, the model may struggle to 
learn meaningful patterns, leading to poor generalization. 

3. Lack of Explicit Temporal Structure: Transformers do not have an inherent 
notion of temporal order, unlike recurrent models. This requires the introduction of 
positional encoding to provide the model with information about the position of each 
time step. While effective, this approach may not capture all the nuances of temporal 
dependencies, particularly in highly non-linear time series. Positional encodings are 
added to the input embeddings as 

. Xt = Et + PE(t),

where .PE(t) represents the positional encoding. However, this approach may not 
fully capture the temporal dynamics of the sequence, especially in complex, non-
stationary time series. The effectiveness of positional encodings is limited by their 
ability to represent temporal relationships, particularly in sequences with irregular 
time intervals or non-stationary patterns.
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Example: In healthcare time series, where the data may be sparse or irregular 
(e.g., patient monitoring with missing data points), transformers may struggle to 
accurately capture the temporal dynamics without extensive data preprocessing or 
augmentation. 

7.4 Optimization and Training Strategies 

The effectiveness of transformers in time series forecasting depends not only on the 
model architecture but also on the optimization and training strategies used. This 
section explores the mathematical foundations of loss functions, hyperparameter 
tuning, and regularization techniques that are crucial for training transformers on 
time series data. 

Loss Functions for Time Series 

The choice of loss function plays a critical role in training transformers for time series 
forecasting. The loss function must be chosen based on the specific objectives of the 
forecasting task, whether it be minimizing prediction error, capturing uncertainty, or 
modeling distributional properties. 

For a time series forecasting task, let .ŷt be the predicted value and .yt the true 
value at time . t . Common loss functions include 

1. Mean Squared Error (MSE): 

. LMSE = 1

T

T∑

t=1

(ŷt − yt )
2,

which penalizes larger errors more severely. 
2. Mean Absolute Error (MAE): 

. LMAE = 1

T

T∑

t=1

|ŷt − yt |,

which is more robust to outliers. 
3. Quantile Loss: For predicting quantiles of the distribution: 

. LQuantile = 1

T

T∑

t=1

{
τ(ŷt − yt ), if ŷt > yt
(1 − τ)(yt − ŷt ), otherwise

,

where . τ is the quantile level.
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The choice of loss function should align with the forecasting objective. For exam-
ple, MSE is optimal for minimizing variance, while quantile loss is suitable for 
estimating conditional quantiles. 

Example: In electricity load forecasting, where extreme errors can be costly, MSE 
might be preferred to penalize large deviations more heavily. 

Hyperparameter Tuning 

Hyperparameter tuning is essential for optimizing transformer performance. Hyper-
parameters such as learning rate, batch size, and the number of attention heads 
significantly influence the training dynamics and final model accuracy. 

Let . θ represent the hyperparameters of the model. The objective is to minimize 
the loss function .L(θ) over a validation set: 

. θ∗ = argmin
θ

L(θ).

Common hyperparameter tuning methods include 
1. Grid Search: Exhaustively searching over a predefined hyperparameter space. 
2. Random Search: Sampling hyperparameters randomly from a distribution. 
3. Bayesian Optimization: Using probabilistic models to guide the search for 

optimal hyperparameters. 
Under certain conditions, such as Lipschitz continuity of the loss function with 

respect to the hyperparameters, Bayesian optimization can converge to the global 
optimum more efficiently than grid or random search. 

In training transformers for disease outbreak prediction, Bayesian optimization 
could be used to find the optimal learning rate and number of attention heads that 
minimize the prediction error on a validation set. 

Regularization Techniques 

Regularization is crucial for preventing overfitting, especially in high-capacity mod-
els like transformers. Regularization techniques add constraints to the optimization 
problem, promoting simpler models that generalize better to unseen data. 

Let .L(θ) be the original loss function and let .�(θ) be a regularization term. The 
regularized loss is 

. Lreg(θ) = L(θ) + λ�(θ),

where. λ is a regularization parameter that controls the trade-off between the original 
loss and the regularization. 

Common regularization techniques include 
1. L2 Regularization (Ridge): 

. �(θ) = ‖θ‖22,

which penalizes large weights and promotes smooth solutions.
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2. Dropout: Randomly dropping units during training to prevent co-adaptation: 

. h = Dropout(h),

where . h represents the hidden states. 
3. Label Smoothing: Modifying the target labels to make the model less confident 

in its predictions: 

. y′
t = (1 − α)yt + α

K
,

where . α is the smoothing parameter and .K is the number of classes. 
Regularization techniques introduce bias to reduce variance, leading to models 

that generalize better. The optimal regularization parameter.λ∗ balances this trade-off, 
minimizing the overall prediction error. 

Example: In healthcare time series, where the data may be noisy and sparse, L2 
regularization combined with dropout can prevent overfitting, leading to more robust 
models that perform well on new patients. 

7.5 Advanced Topics and Future Directions 

As the field of time series forecasting with transformers continues to evolve, 
researchers are exploring advanced topics that extend the capabilities of these mod-
els. This section delves into hybrid models that combine transformers with traditional 
approaches, as well as strategies for improving scalability and efficiency. 

7.5.1 Hybrid Models 

Hybrid models leverage the strengths of both transformers and traditional time series 
models, creating a synergistic approach that improves forecasting accuracy and 
robustness. By combining different modeling paradigms, hybrid models can capture 
a broader range of temporal patterns and dependencies. 

Combining Transformers with Traditional Models 

Traditional time series models, such as ARIMA, Exponential Smoothing, and 
GARCH, have well-established mathematical foundations and are effective in cap-
turing specific types of patterns, such as seasonality and volatility. However, they 
often struggle with non-linear dependencies and complex temporal relationships. 
Transformers, on the other hand, excel in modeling these complex patterns but may 
lack the interpretability and domain-specific insights provided by traditional models.
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Let.yt represent the time series data, which can be decomposed into a component 
modeled by a traditional approach .ytrad

t and a component modeled by a transformer 
.ytrans
t . The hybrid model can be expressed as 

. ŷt = αytrad
t + βytrans

t + εt ,

where .α and .β are weights that balance the contributions of the traditional and 
transformer components, and . εt is the error term. 

Under certain conditions, the hybrid model can outperform both the traditional and 
transformer models individually. If . α and . β are chosen optimally, the hybrid model 
can minimize the overall prediction error by capturing both linear and non-linear 
dependencies in the data. 

Example: In financial time series forecasting, a hybrid model might combine a 
GARCH model for capturing volatility with a transformer for modeling complex 
patterns in price movements. The GARCH component would handle the predictable 
aspects of volatility, while the transformer would capture more intricate, non-linear 
relationships. 

Mathematical Formulation of Hybrid Models 

The success of hybrid models depends on the proper integration of the different com-
ponents. This requires a careful mathematical formulation that ensures the models 
complement each other rather than compete. 

The hybrid model can be formulated as a convex combination of the traditional 
and transformer components: 

. ŷt =
n∑

i=1

αiytrad,i
t +

m∑

j=1

β jy
trans, j
t + εt ,

where.ytrad,i
t represents the output of the.i-th traditional model and.ytrans, j

t represents 
the output of the . j-th transformer model. The weights .αi and .β j are optimized to 
minimize a loss function . L: 

. L(α, β) = 1

T

T∑

t=1

‖yt − ŷt‖2 + λ

⎛

⎝
n∑

i=1

‖αi‖2 +
m∑

j=1

‖β j‖2
⎞

⎠ ,

where . λ is a regularization parameter to prevent overfitting. 
If the loss function is convex, the optimization process will converge to a global 

minimum, ensuring that the hybrid model effectively balances the contributions of 
the traditional and transformer components. 

Example: In energy demand forecasting, a hybrid model might use an ARIMA 
model to capture the linear trend and seasonality, combined with a transformer to
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model the non-linear relationships between temperature, time of day, and electricity 
load. 

7.5.2 Scalability and Efficiency 

As transformers are applied to increasingly large and complex time series datasets, 
scalability and efficiency become critical. This section explores advanced techniques 
to optimize the computational and memory efficiency of transformers, enabling their 
application to long sequences and large-scale datasets. 

Efficient Attention Mechanisms for Long Sequences 

The self-attention mechanism in transformers, while powerful, has a quadratic com-
plexity with respect to the sequence length, making it computationally expensive 
for long sequences. Various efficient attention mechanisms have been proposed to 
address this limitation by approximating or modifying the attention computation. 

Let .Q, K, V represent the queries, keys, and values, respectively. The standard 
attention mechanism computes 

. Attention(Q, K, V) = softmax

(
QK�
√
dk

)
V.

To improve efficiency, approximate methods, such as sparse attention or locality-
sensitive hashing (LSH), reduce the complexity by focusing only on a subset of the 
most relevant key-value pairs. 

In sparse attention, only a subset of the attention weights is computed, based on 
a predefined sparsity pattern: 

. SparseAttention(Q, K, V) =
∑

(i, j)∈S
αi jv j ,

where . S is the set of non-zero attention pairs. 
Efficient attention mechanisms introduce an approximation error. ε in the attention 

computation. The error is bounded by 

. ‖Attention(Q, K, V) − EfficientAttention(Q, K, V)‖ ≤ ε,

where . ε depends on the sparsity pattern or approximation technique used.
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Example: In weather forecasting, where long sequences of atmospheric data need 
to be processed, sparse attention mechanisms can significantly reduce the computa-
tional burden, allowing transformers to handle longer sequences without sacrificing 
accuracy. 

Memory Optimization Techniques 

Memory usage is a critical concern when training transformers on large-scale 
datasets, particularly when working with long sequences. Memory optimization tech-
niques, such as gradient checkpointing and mixed-precision training, can help reduce 
memory requirements while maintaining model performance. 

Memory optimization involves strategically reducing the amount of data stored in 
memory during training. Gradient checkpointing, for instance, trades off computation 
for memory by recomputing certain activations during the backward pass instead of 
storing them: 

. CheckpointedGradient = ∂L
∂θ

=
T∑

t=1

∂L
∂ht

· ∂ht
∂θ

,

where .ht represents hidden states, and only a subset of .ht is stored, with the others 
being recomputed as needed. 

Mixed-precision training reduces memory usage by storing some model param-
eters and activations in lower precision (e.g., 16 bit instead of 32 bit) without 
significantly affecting model accuracy: 

. θmixed = cast(θ,float16) + gradients(θ,float32).

Memory optimization techniques introduce a trade-off between memory usage 
and computational cost. The optimal balance is achieved when the reduction in 
memory usage leads to only a minimal increase in computation time or a negligible 
decrease in accuracy. 

Example: In healthcare time series analysis, where large patient datasets need to be 
processed in real time, memory optimization techniques such as gradient checkpoint-
ing allow for the training of large transformer models without exceeding memory 
constraints, making them feasible for deployment in clinical settings. 

7.5.3 Interpretability 

Interpretable models are designed to provide insights into how predictions are made, 
allowing users to understand the relationships between input variables and model
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outputs. In the context of transformers, interpretability can be achieved by analyz-
ing the attention weights, feature importance, and other aspects of the model that 
contribute to its decision-making process. 

Let .X represent the input time series data, and . ŷ the predicted output. An inter-
pretable model aims to express . ŷ as a function of the most relevant features in . X, 
denoted by .Ximportant. The model can be represented as 

. ŷ = f (Ximportant) + ε,

where . f is an interpretable function, such as a linear combination of the selected 
features, and . ε represents the residual error. 

Under the assumption that only a subset of the input features .X is relevant to 
the prediction, sparsity-inducing techniques such as Lasso regression can be used to 
identify .Ximportant. The solution to the Lasso problem 

. min
β

{
1

2N

N∑

i=1

(yi − Xiβ)2 + λ‖β‖1
}

promotes sparsity in . β, effectively selecting the most important features. 
Example: In financial time series forecasting, an interpretable model might iden-

tify key indicators such as moving averages and momentum as the most relevant 
features for predicting stock prices, allowing investors to understand the rationale 
behind the model’s predictions. 

Explaining Model Predictions 

Explaining model predictions involves providing a clear and detailed understand-
ing of why a model made a particular prediction. For transformers, this often 
involves analyzing the attention weights and how they are distributed across the 
input sequence. 

In a transformer model, the attention mechanism assigns a weight .αi j to each 
element of the input sequence. X. The predicted output can be expressed as a weighted 
sum of the input features: 

. ŷ =
T∑

i=1

αi jXi ,

where .αi j indicates the importance of feature .Xi at position . i for the prediction of 
. ŷ. The goal of explainability is to understand how these weights .αi j influence the 
prediction. 

Shapley values, derived from cooperative game theory, provide a method to fairly 
attribute the contribution of each feature to the prediction. For a set of features 
.X = {X1, X2, . . . , XT }, the Shapley value for feature .Xi is given by



7.6 Challenges and Future Directions 307

. φi =
∑

S⊆X\{Xi }

|S|!(T − |S| − 1)!
T ! [ f (S ∪ {Xi }) − f (S)] ,

where. f (S) is the model prediction based on the subset. S of features. Shapley values 
provide a comprehensive measure of each feature’s contribution to the prediction. 

Example: In healthcare time series, explaining why a model predicts a certain 
health outcome for a patient might involve analyzing the attention weights and Shap-
ley values for features like heart rate, blood pressure, and temperature, providing 
doctors with a clear rationale for the prediction. 

7.6 Challenges and Future Directions 

The application of transformers to time series forecasting presents several challenges 
that need to be addressed to fully realize their potential. This section explores these 
challenges, including dealing with missing data and handling non-stationarity, and 
outlines future research directions in time series forecasting with transformers. 

Dealing with Missing Data 

Missing data is a common issue in time series, where observations may be missing 
due to sensor failures, reporting errors, or other factors. Effective handling of missing 
data is crucial for maintaining model accuracy and robustness. 

Let. X represent the time series data, with missing values denoted by.Xmissing.  The  
objective is to impute these missing values, .X̂missing, such that the imputed series 
.Ximputed = X ∪ X̂missing preserves the underlying data structure. 

Imputation Methods: 
1. Mean Imputation: 

. X̂t,missing = 1

N

N∑

i=1

Xt,i ,

where the missing value is replaced with the mean of the observed values. 
2. Interpolation: 

. X̂t,missing = Xt−1 + Xt+1

2
,

which estimates the missing value based on neighboring observations. 
3. Model-Based Imputation: Impute using a model trained on the observed data: 

. X̂t,missing = f (Xobserved),

where . f is a model such as a transformer or Gaussian process.
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The choice of imputation method introduces a trade-off between bias and variance. 
Mean imputation introduces bias by ignoring the temporal structure, while model-
based imputation can reduce bias but increase variance due to model uncertainty. 

Example: In energy demand forecasting, where sensors may occasionally fail, 
model-based imputation using a transformer trained on the observed data can pro-
vide accurate estimates of the missing values, ensuring that the forecasting model 
remains robust. 

Handling Non-Stationarity 

Non-stationarity, where the statistical properties of the time series change over time, 
poses a significant challenge for time series forecasting models. Transformers, like 
other models, need to be adapted to handle non-stationary data effectively. 

A time series. X is non-stationary if its mean, variance, or auto-correlation structure 
changes over time. The goal is to transform the series into a stationary form,.Xstationary, 
where these properties remain constant, or to adapt the model to handle the non-
stationarity directly. 

Methods for Handling Non-Stationarity: 
1. Differencing: Apply differencing to remove trends: 

. Xdiff = Xt − Xt−1,

which often stabilizes the mean. 
2. Transformation: Apply a transformation, such as logarithms or Box-Cox, to 

stabilize the variance: 
. Xtransformed = log(X).

3. Model Adaptation: Use models that can handle non-stationarity, such as 
transformers with time-varying parameters or recurrent models with memory 
mechanisms. 

For a stationary time series, the forecasting error tends to be lower due to the 
consistent statistical properties. Transforming a non-stationary series into a stationary 
form before modeling can significantly improve forecasting accuracy. 

Example: In weather forecasting, where seasonal patterns and trends can lead to 
non-stationarity, differencing the data or applying seasonal decomposition before 
feeding it into a transformer can enhance the model’s performance. 

Future Research Directions in Time Series Forecasting 

The field of time series forecasting with transformers is rapidly evolving, with sev-
eral promising research directions. These include the development of more inter-
pretable models, better methods for handling missing and non-stationary data, and 
the exploration of new architectures and training techniques that further enhance the 
performance of transformers in time series applications.
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Exploration: 
1. Interpretable Transformers: Develop transformers that inherently produce inter-

pretable outputs by incorporating feature importance measures, attention visualiza-
tion, and model simplification techniques. 

2. Robust Handling of Missing Data: Explore new imputation techniques 
that leverage the full power of deep learning, such as generative models and 
self-supervised learning, to accurately predict missing values in complex time series. 

3. Advanced Non-Stationarity Techniques: Investigate the use of non-linear trans-
formations, wavelet decompositions, and adaptive learning rates to better handle 
non-stationary time series in transformer models. 

As time series forecasting continues to grow in importance, the need for models 
that are both powerful and interpretable will drive research in hybrid approaches, 
model explainability, and efficiency. In financial markets, future research might focus 
on developing interpretable transformers that not only predict market movements 
with high accuracy but also provide clear explanations of the factors driving these 
predictions, helping traders and analysts make more informed decisions. 
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Chapter 8 
Signal Analysis and Transformers 

8.1 Signal Processing 

Signal processing is a crucial aspect of many modern technologies, including com-
munications, audio processing, and control systems. It also plays a significant role 
in the application of transformers to tasks involving time series data, such as speech 
recognition, financial forecasting, and more. This section provides a mathemati-
cal treatment of signal processing in the time domain, focusing on fundamental 
concepts like time series representation, auto-correlation and cross-correlation, and 
convolution and filtering. 

8.1.1 Time-Domain Analysis 

Time-domain analysis involves examining signals with respect to time, providing 
insights into their temporal structure and dynamics. This analysis is foundational for 
understanding how signals evolve and interact over time, which is essential for tasks 
involving sequential data. 

Time Series Representation 

A time series is a sequence of data points indexed in time order, often representing 
how a particular quantity evolves over time. Mathematically, a time series can be 
defined as a function .x : Z → R that maps each time index .t ∈ Z to a real value 
.x(t). 

Let .x(t) represent a discrete time signal, where . t is an integer representing the 
time index. The time series can be expressed as 
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. x = {x(t)}t∈Z = {x(t1), x(t2), . . . , x(tn)},

where.t1, t2, . . . , tn are specific time points and.x(ti ) is the value of the signal at time 
. ti . 

Example: In financial markets, .x(t) could represent the closing price of a stock 
at time . t , forming a time series that captures the price fluctuations over a period. 

A time series.x(t) is said to be stationary if its statistical properties, such as mean, 
variance, and auto-correlation, do not change over time. Formally, .x(t) is stationary 
if 

. E[x(t)] = μ, Var(x(t)) = σ 2, Cov(x(t), x(t + τ)) = γ (τ),

where .μ is the constant mean, .σ 2 is the constant variance, and .γ (τ) is the 
autocovariance function that depends only on the time difference . τ . 

Application: In signal processing, stationarity is an important assumption that 
simplifies the analysis and modeling of time series, particularly in forecasting and 
filtering. 

Auto-correlation and Cross-correlation 

Auto-correlation and cross-correlation are fundamental tools for analyzing the tem-
poral dependencies within a signal or between multiple signals. These measures 
capture the degree to which a signal correlates with a lagged version of itself or with 
another signal. 

1. Auto-correlation Function (ACF): The auto-correlation function measures the 
correlation of a signal with a delayed copy of itself as a function of the delay (or lag) 
. τ . For a signal .x(t), the auto-correlation at lag . τ is defined as 

. Rxx (τ ) = E[x(t) · x(t + τ)] = lim
T→∞

1

2T

∫ T

−T
x(t) · x(t + τ) dt.

For a discrete time signal, this becomes 

. Rxx (τ ) =
∞∑

t=−∞
x(t) · x(t + τ).

2. Cross-correlation Function (CCF): The cross-correlation function measures the 
similarity between two signals .x(t) and .y(t) as a function of the lag . τ . It is defined 
as 

. Rxy(τ ) = E[x(t) · y(t + τ)] = lim
T→∞

1

2T

∫ T

−T
x(t) · y(t + τ) dt.

For discrete time signals: 

.Rxy(τ ) =
∞∑

t=−∞
x(t) · y(t + τ).
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Properties: 
1. Symmetry: The auto-correlation function is symmetric, .Rxx (τ ) = Rxx (−τ). 
2. Maximum at Zero Lag: The maximum value of the auto-correlation function 

occurs at .τ = 0. 
3. Cross-correlation Symmetry: Cross-correlation satisfies .Rxy(τ ) = Ryx (−τ). 
Example: In speech signal processing, auto-correlation can be used to identify 

periodicities in the signal, such as the pitch of a voice, while cross-correlation can 
measure the similarity between two different audio signals, such as a transmitted and 
received signal in a communication system. 

Convolution and Filtering 

Convolution is a mathematical operation used to combine two signals, often used in 
the context of filtering, where a signal is modified by another signal (the filter) to 
achieve a desired effect, such as smoothing, sharpening, or detecting features. 

1. The convolution of two signals .x(t) and .h(t) is defined as 

. y(t) = (x ∗ h)(t) =
∫ ∞

−∞
x(τ )h(t − τ) dτ,

where.y(t) is the output signal. For discrete time signals, the convolution is given by 

. y[n] = (x ∗ h)[n] =
∞∑

m=−∞
x[m] · h[n − m].

2. Filtering is the process of modifying or extracting specific components of a 
signal. A filter .h(t) is applied to a signal.x(t) via convolution, producing the filtered 
signal.y(t). Depending on the nature of the filter, this operation can emphasize certain 
frequencies (e.g., low-pass, high-pass filters) or remove noise. 

If a system is linear and time invariant (LTI), the output .y(t) of the system to an 
input .x(t) is given by the convolution of the input signal with the system’s impulse 
response .h(t): 

. y(t) = (x ∗ h)(t).

This property makes convolution a fundamental tool in signal processing for 
analyzing the response of LTI systems. 

Example: In image processing, convolution with a Gaussian filter is used to blur an 
image, reducing noise and details. In audio processing, convolution with an impulse 
response can simulate the acoustics of different environments, such as concert halls 
or small rooms.



314 8 Signal Analysis and Transformers

8.1.2 Frequency-Domain Analysis 

In frequency-domain analysis, a signal is represented as a sum of sinusoids with 
different frequencies, amplitudes, and phases. This approach allows for the decom-
position of a signal into its constituent frequency components, making it easier to ana-
lyze and manipulate the signal in various applications, such as filtering and spectral 
analysis. 

Fourier Transform 

The Fourier transform is a fundamental mathematical tool that converts a time-
domain signal into its frequency-domain representation. It expresses the signal as a 
sum of sinusoids, each with a specific frequency, amplitude, and phase. 

For a continuous-time signal .x(t), the Fourier transform.X ( f ) is defined as 

. X ( f ) =
∫ ∞

−∞
x(t)e− j2π f t dt,

where . f represents the frequency and . j is the imaginary unit. 
The inverse Fourier transform, which reconstructs the time-domain signal from 

its frequency-domain representation, is given by 

. x(t) =
∫ ∞

−∞
X ( f )e j2π f t d f.

Parseval’s theorem states that the total energy of a signal in the time domain is 
equal to the total energy in the frequency domain: 

. 

∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X ( f )|2 d f.

This theorem provides a powerful connection between the time and frequency 
domains, ensuring that energy is conserved during the transformation. 

Example: For a sinusoidal signal .x(t) = A cos(2π f0t + φ), where .A is the 
amplitude, . f0 is the frequency, and . φ is the phase, the Fourier transform is 

. X ( f ) = A

2
[δ( f − f0) + δ( f + f0)] ,

indicating that the signal’s frequency content is concentrated at .± f0.
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Discrete Fourier Transform (DFT) 

The Discrete Fourier Transform (DFT) is the discrete counterpart of the Fourier 
transform, applied to sequences of values, such as digital signals sampled at discrete 
time intervals. The DFT converts a finite sequence of equally spaced samples of a 
function into a sequence of coefficients of a finite combination of complex sinusoids. 

Given a discrete time signal .x[n] of length . N ,  the  DF  T .X [k] is defined as 

. X [k] =
N−1∑
n=0

x[n]e− j 2πN kn,

where .k = 0, 1, 2, . . . , N − 1. 
The inverse DFT, which reconstructs the time-domain sequence from its 

frequency-domain representation, is given by 

. x[n] = 1

N

N−1∑
k=0

X [k]e j 2πN kn.

The exponential functions.e− j 2πN kn used in the DFT are orthogonal over the interval 
.n = 0, 1, . . . , N − 1: 

. 

N−1∑
n=0

e− j 2πN kne j 2πN mn = Nδ[k − m],

where .δ[k − m] is the Kronecker delta. This orthogonality property is fundamental 
to the DFT, as it ensures that the frequency components are independent and can be 
isolated. 

Example: For a digital signal sampled at a rate of .N points, the DFT provides 
the frequency content of the signal in terms of .N discrete frequency bins. Each bin 
represents a specific frequency component of the signal. 

Fast Fourier Transform (FFT) 

The Fast Fourier Transform (FFT) ([ 2]) is an efficient algorithm for computing the 
DFT of a sequence. The FFT reduces the computational complexity of the DFT from 
.O(N 2) to .O(N log N ), making it feasible to compute the DFT of large sequences. 

The FFT algorithm exploits the symmetries in the DFT formula to reduce the 
number of arithmetic operations required. For a sequence of length . N , where . N =
2m (a power of two), the FFT recursively divides the DFT into smaller DFTs of 
even-indexed and odd-indexed elements:
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. X [k] =
N/2−1∑
n=0

[
x[2n]e− j 2π

N/2 kn + x[2n + 1]e− j 2πN kn
]
,

where the DFTs of the even and odd parts are computed separately and combined. 
The FFT algorithm has a time complexity of .O(N log N ), which is significantly 

more efficient than the .O(N 2) complexity of the direct DFT computation. This 
efficiency makes the FFT the algorithm of choice for frequency-domain analysis in 
practical applications. 

Example: In real-time signal processing, such as audio or video processing, the 
FFT allows for rapid analysis of the frequency content of signals, enabling tasks like 
filtering, spectral analysis, and even real-time effects processing. 

Wavelet Transform 

The wavelet transform ([ 3]) analyzes a signal by decomposing it into shifted and 
scaled versions of a prototype function called a wavelet. Unlike the Fourier transform, 
which uses sinusoids as basis functions, the wavelet transform uses wavelets, which 
are localized in both time and frequency. This localization allows for the analysis of 
signals with time-varying frequency content. 

Let .ψ(t) be a mother wavelet, a function that is localized in both time and 
frequency. The wavelet transform of a signal .x(t) is defined as 

. W (a, b) = 1√|a|
∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt,

where. a is the scale parameter,. b is the translation (shift) parameter, and.ψ∗(t) denotes 
the complex conjugate of the mother wavelet. 

Scale Parameter. a: It controls the frequency content of the wavelet. A larger. a cor-
responds to a lower frequency (more stretched wavelet), and a smaller. a corresponds 
to a higher frequency (more compressed wavelet). 

Translation Parameter . b: It controls the time localization of the wavelet, shifting 
it along the time axis. 

The wavelet transform decomposes the signal into wavelets at different scales and 
translations, providing a multi-resolution analysis of the signal. For a wavelet . ψ(t)
to be admissible (i.e., suitable for reconstructing the original signal from its wavelet 
transform), it must satisfy the admissibility condition: 

. Cψ =
∫ ∞

−∞
|ψ̂( f )|2

| f | d f < ∞,

where.ψ̂( f ) is the Fourier transform of.ψ(t). This condition ensures that the wavelet 
has zero mean and is localized in both time and frequency.
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Example: The Morlet wavelet, defined as .ψ(t) = exp( j2π f0t) exp
(
− t2

2σ 2

)
,  is  a  

commonly used wavelet in signal processing. It is a complex sinusoid modulated by 
a Gaussian window, providing good localization in both time and frequenc y. 

Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform (CWT) provides a continuous representation of 
the signal in both time and scale (frequency). It is particularly useful for analyzing 
signals with smoothly varying time-frequency content. 

The CWT of a signal .x(t) is given by 

. W (a, b) = 1√|a|
∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt,

where .W (a, b) is the wavelet coefficient corresponding to scale . a and translation . b. 
The CWT provides a continuous mapping of the signal into the time-scale plane. 

The original signal .x(t) can be reconstructed from its wavelet transform via the 
inverse CWT: 

. x(t) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞
W (a, b)ψ

(
t − b

a

)
da db

a2
,

where.Cψ is the admissibility constant. This formula shows that the CWT preserves 
all the information needed to reconstruct the original signal. 

Example: The CWT can be used to analyze the time-frequency characteristics of 
non-stationary signals, such as chirp signals (signals whose frequency increases or 
decreases with time). The CWT allows for the detection and characterization of such 
frequency modulations over time. 

Discrete Wavelet Transform (DWT) 

The Discrete Wavelet Transform (DWT) is a sampled version of the CWT, typically 
implemented using a filter bank approach. The DWT provides a hierarchical decom-
position of the signal into different frequency bands, making it computationally 
efficient and suitable for practical applications. 

The DWT is computed by sampling the scale and translation parameters in the 
CWT. Specifically, let .a = 2 j and.b = k2 j , where. j and. k are integers. The DWT is 
then given by 

. W [ j, k] = 1√
2 j

∫ ∞

−∞
x(t)ψ∗

(
t − k2 j

2 j

)
dt,

where .W [ j, k] represents the wavelet coefficient at scale .2 j and translation .k2 j .
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The DWT can be efficiently computed using a multi-level filter bank, where 
the signal is passed through a series of high-pass and low-pass filters, followed by 
downsampling. This process decomposes the signal into approximation and detail 
coefficients at each level. 

The DWT provides a multi-resolution analysis of the signal, where the signal is 
decomposed into approximation and detail components at different levels of resolu-
tion. Formally, let .Vj and .Wj represent the approximation and detail spaces at level 
. j . Then 

. Vj+1 = Vj ⊕ Wj ,

where .⊕ denotes the direct sum of the spaces. This decomposition allows for the 
analysis of the signal at different levels of detail. 

Example: In image processing, the DWT is used for image compression, such 
as in the JPEG2000 standard. The image is decomposed into different frequency 
bands using the DWT, and the high-frequency components (which often correspond 
to noise or fine details) can be discarded or quantized more coarsely, leading to 
efficient compression. 

Spectrogram and Time–Frequency Representation 

The spectrogram is a fundamental tool in time–frequency analysis, providing a visual 
representation of how the frequency content of a signal evolves over time. It is 
computed by applying the Fourier transform to short, overlapping segments of the 
signal, resulting in a two-dimensional plot with time on one axis and frequency on 
the other. 

Given a signal .x(t), the spectrogram.S(t, f ) is defined as the magnitude squared 
of the Short-Time Fourier Transform (STFT) of the signal: 

. S(t, f ) =
∣∣∣∣
∫ ∞

−∞
x(τ )w(τ − t)e− j2π f τ dτ

∣∣∣∣
2

,

where .w(τ) is a window function that is localized in time, such as a Gaussian or 
Hamming window. The window function is used to isolate segments of the signal, 
allowing the Fourier transform to capture the frequency content within each segment. 

The time-frequency uncertainty principle states that there is a trade-off between 
the time and frequency resolution of the spectrogram. Formally, for a window 
function .w(t), the product of the time duration .	t and the bandwidth .	 f satisfies 

. 	t · 	 f ≥ 1

4π
.

This inequality implies that improving time resolution comes at the cost of 
frequency resolution, and vice versa.
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Example: In speech processing, the spectrogram is used to analyze the time-
varying frequency content of speech signals, capturing formants and other features 
that are crucial for tasks such as speech recognition and speaker identification. 

8.1.3 Advanced Signal Processing Techniques 

Here, we discuss the basic tools of Fourier and wavelet analysis to address more com-
plex signals, particularly those with non-linear, non-stationary, or multi-component 
characteristics. 

Hilbert Transform 

The Hilbert transform is a linear operator that shifts the phase of a signal by.90◦, effec-
tively generating a complex-valued signal from a real-valued signal. It is widely used 
in the analysis of analytic signals, envelope detection, and instantaneous frequency 
estimation. 

The Hilbert transform.H[x(t)] of a signal .x(t) is defined as 

. H[x(t)] = 1

π

∫ ∞

−∞
x(τ )

t − τ
dτ.

The analytic signal .z(t) associated with .x(t) is then given by 

. z(t) = x(t) + jH[x(t)] = A(t)e jφ(t),

where .A(t) is the amplitude envelope and .φ(t) is the instantaneous phase of the 
signal. 

The instantaneous frequency . fi (t) of a signal .x(t) is the time derivative of the 
instantaneous phase .φ(t) obtained from the analytic signal: 

. fi (t) = 1

2π

dφ(t)

dt
.

This allows for the analysis of frequency variations over time, which is particularly 
useful in applications such as radar and communication systems. 

Example: The Hilbert transform is used in modulation techniques, where the 
analytic signal helps separate the carrier and modulation components of a signal, 
facilitating the extraction of amplitude and phase information.
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Short-Time Fourier Transform 

STFT is a modification of the Fourier transform that allows for the analysis of non-
stationary signals by dividing the signal into short segments and applying the Fourier 
transform to each segment. The STFT provides a time-frequency representation of 
the signal, capturing how its frequency content evolves over time. 

The STFT of a signal .x(t) with respect to a window function .w(t) is defined as 

. X (t, f ) =
∫ ∞

−∞
x(τ )w(τ − t)e− j2π f τ dτ.

The window function.w(t) determines the time resolution of the STFT, with narrower 
windows providing better time resolution but poorer frequency resolution. 

The original signal .x(t) can be reconstructed from its STFT using the inverse 
STFT: 

. x(t) = 1

w(0)

∫ ∞

−∞

∫ ∞

−∞
X (τ, f )w(τ − t)e j2π f τ d f dτ.

This reconstruction formula ensures that the STFT retains all the information 
needed to reconstruct the original signal. 

Example: The STFT is widely used in music analysis to visualize the harmonic 
structure of audio signals over time. It allows for the identification of notes, chords, 
and other musical features by analyzing the time-varying frequency content. 

Empirical Mode Decomposition (EMD) 

EMD is a data-driven technique for decomposing a non-stationary signal into a set 
of intrinsic mode functions (IMFs), each representing a simple oscillatory mode. 
EMD is particularly useful for analyzing signals with non-linear and non-stationary 
characteristics. Given a signal .x(t), the EMD process involves iteratively extracting 
IMFs by identifying local maxima and minima, constructing the upper and lower 
envelopes, and subtracting the mean envelope from the signal. The first IMF.c1(t) is 
extracted as 

. c1(t) = x(t) − mean envelope of x(t).

The residual signal .r1(t) = x(t) − c1(t) is then used to extract the next IMF, 
and the process continues until the residual is a monotonic function. The signal is 
decomposed as 

. x(t) =
n∑

i=1

ci (t) + rn(t),

where .ci (t) are the IMFs and .rn(t) is the final residual.
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The IMFs .ci (t) obtained through EMD are approximately orthogonal, meaning 
that their inner product is close to zero: 

. 

∫ ∞

−∞
ci (t)c j (t) dt ≈ 0 for i �= j.

This orthogonality ensures that the IMFs represent distinct oscillatory modes of 
the signal. 

Example: EMD is commonly used in biomedical signal processing, such as in 
the analysis of electroencephalogram (EEG) signals. It allows for the extraction of 
different brainwave components (e.g., alpha, beta, delta waves) from raw EEG data, 
facilitating the study of brain activity. 

8.2 Transformers in Audio and Speech Processing 

The application of transformers in audio and speech processing leverages their power-
ful sequence-to-sequence modeling capabilities and attention mechanisms to capture 
complex temporal dependencies in audio signals. This section provides a mathemat-
ical formulation of how transformers are applied to audio and speech tasks, focusing 
on sequence-to-sequence models and the role of attention mechanisms. 

8.2.1 Mathematical Formulation 

Audio and speech processing tasks often involve transforming an input audio signal 
into a corresponding output sequence, such as in speech recognition, where the 
goal is to transcribe spoken language into text. Transformers, with their ability to 
model long-range dependencies and capture contextual information through attention 
mechanisms, are particularly well suited for these tasks. 

Sequence-to-Sequence Models for Audio 

In sequence-to-sequence (Seq2Seq) models, the goal is to map an input sequence 
of audio features to an output sequence, such as phonemes, words, or characters. 
The transformer architecture, originally designed for natural language processing, 
has been adapted for audio processing by modeling the input audio as a sequence of 
feature vectors. 

Let .x = (x1, x2, . . . , xT ) represent the input sequence of audio feature vectors, 
where .xt ∈ R

d is the feature vector at time step . t and .T is the length of the 
sequence. The output sequence .y = (y1, y2, . . . , yT ′) consists of tokens such as
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phonemes or words, where .T ′ is the length of the output sequence. The trans-
former encoder processes the input sequence to produce a sequence of hidden states 
.H = (h1, h2, . . . , hT ), where each hidden state .ht captures contextual information 
from the entire input sequence: 

. H = Encoder(x).

The decoder then generates the output sequence by attending to the encoded 
hidden states and producing one token at a time: 

. yt = Decoder(y<t , H),

where .y<t denotes the tokens generated so far. 
The sequence-to-sequence transformer models the conditional probability of the 

output sequence given the input sequence as a product of conditional probabilities: 

. P(y | x) =
T ′∏
t=1

P(yt | y<t , H),

where each conditional probability .P(yt | y<t , H) is modeled by the decoder. This 
formulation captures the dependency of each output token on both the input sequence 
and the previously generated tokens. 

Example: In automatic speech recognition (ASR), the input sequence . x consists 
of acoustic features extracted from the audio waveform, and the output sequence. y is 
the transcription of the spoken words. The transformer-based ASR model maps the 
acoustic features to text, capturing long-range dependencies in both the audio signal 
and the language model. 

Attention Mechanisms in Audio Processing 

Attention mechanisms are central to the success of transformers in audio processing. 
They allow the model to dynamically focus on different parts of the input sequence 
when generating each token of the output sequence, enabling the capture of relevant 
temporal dependencies and contextual information. 

The attention mechanism computes a weighted sum of the encoder hidden states, 
where the weights are determined by the similarity between the decoder’s current 
state and each encoder hidden state. For an output token. yt , the attention mechanism 
is defined as 

.ct =
T∑
i=1

αt,ihi ,
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where . ct is the context vector and .αt,i are the attention weights given by 

. αt,i = exp(et,i )∑T
j=1 exp(et, j )

,

with the alignment score .et,i computed as 

. et,i = Score(st−1, hi ),

where .st−1 is the decoder’s state from the previous time step. 
The attention mechanism can be interpreted as a soft alignment between the 

input and output sequences. The attention weights .αt,i sum to one and provide a 
probability distribution over the input sequence, indicating how much each input 
time step contributes to the generation of the current output token. 

Example: In audio-based tasks like speech translation, the attention mechanism 
allows the model to focus on the relevant portions of the input audio corresponding 
to the current part of the translation. This enables the model to handle variations in 
speaking speed, pauses, and other temporal aspects of speech more effectively than 
traditional methods. 

8.2.2 Speech Recognition 

Speech recognition is the process of converting spoken language into text. In this 
context, transformers serve as powerful models that can capture the intricate temporal 
and contextual dependencies in speech, making them ideal for ASR systems. 

Automatic Speech Recognition (ASR) Systems 

Traditional ASR systems are typically composed of multiple components, including 
acoustic models, language models, and pronunciation models. These components 
work together to transcribe speech into text. The acoustic model maps audio features 
to phonetic representations, the language model captures the probability of word 
sequences, and the pronunciation model maps phonetic sequences to words. 

Let .x = (x1, x2, . . . , xT ) be the sequence of acoustic feature vectors extracted 
from an audio signal, and .y = (y1, y2, . . . , yT ′) be the corresponding sequence of 
words or phonemes. The goal of an ASR system is to find the most probable word 
sequence .y∗ given the acoustic features: 

.y∗ = argmax
y

P(y | x),
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where .P(y | x) is the posterior probability of the word sequence given the acoustic 
features. 

This probability is typically decomposed using Bayes’ theorem into an acoustic 
model and a language model: 

. P(y | x) = P(x | y)P(y),

where .P(x | y) is the likelihood from the acoustic model and .P(y) is the prior 
probability from the language model. 

In traditional ASR systems, the Viterbi algorithm is used to find the most likely 
sequence of hidden states (e.g., phonemes) that generate the observed acoustic fea-
tures. This algorithm optimizes the joint probability by considering the most likely 
path through the state space, defined by the hidden Markov model (HMM): 

. y∗ = argmax
y

T∏
t=1

P(xt | yt )P(yt | yt−1),

where .P(yt | yt−1) represents the transition probabilities between states. 
Example: In a traditional ASR system, the acoustic model might be a Gaussian 

mixture model (GMM) that estimates the probability distribution of acoustic features 
given phonemes, while the language model could be an n-gram model that captures 
the likelihood of word sequences. 

End-to-End ASR Models 

End-to-end ASR models, such as those based on transformers, simplify the traditional 
ASR pipeline by directly mapping acoustic features to text. These models learn to 
jointly optimize the acoustic, pronunciation, and language models within a single 
neural network, eliminating the need for separate components. 

In an end-to-end ASR model, the transformer encoder processes the input 
sequence of acoustic features . x to produce a sequence of hidden states . H: 

. H = Encoder(x).

The decoder then generates the output text sequence. y by attending to the hidden 
states . H: 

. P(y | x) =
T ′∏
t=1

P(yt | y<t , H),

where each probability .P(yt | y<t , H) is modeled by the decoder using attention 
mechanisms. 

A common approach in end-to-end ASR models is Connectionist Temporal Clas-
sification (CTC), which allows for alignment-free training by introducing a blank 
label . φ that represents no output:
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. P(y | x) =
∑

π∈align(y)

P(π | x),

where .π represents possible alignments of . y with . x. The CTC loss function max-
imizes the probability of the correct label sequence by summing over all valid 
alignments. 

Example: In an end-to-end transformer-based ASR system, the acoustic fea-
tures might be fed into a transformer encoder, which learns contextual represen-
tations of the speech signal. The decoder, equipped with self-attention, generates the 
transcription by focusing on relevant parts of the encoded signal. 

Evaluation Metrics (WER, CER) 

Evaluating the performance of ASR systems requires metrics that quantify the accu-
racy of the transcribed text. The two most common metrics are Word Error Rate 
(WER) and Character Error Rate (CER). 

1. Word Error Rate (WER): WER is defined as the ratio of the sum of insertion 
(. I ), deletion (. D), and substitution (. S) errors to the total number of words in the 
reference transcription . N : 

. WER = S + D + I

N
.

The WER captures how many words in the transcription are incorrect, missing, or 
extra compared to the reference. 

2. Character Error Rate (CER): CER is similar to WER but is calculated at the 
character level, making it more sensitive to small errors: 

. CER = Sc + Dc + Ic
Nc

,

where . Sc, .Dc, . Ic, and .Nc represent the substitution, deletion, insertion, and total 
number of characters, respectively. 

The WER and CER can be computed using the Levenshtein distance, which 
measures the minimum number of single-character edits (insertions, deletions, or 
substitutions) required to change one string into another: 

. Levenshtein(a, b) = min{edit operations to convert a to b}.

This distance directly relates to the error rates, as it quantifies the discrepancy between 
the predicted and reference transcriptions. 

Example: For a speech recognition system transcribing a spoken sentence, WER 
might capture the overall accuracy of word recognition, while CER would reflect finer
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errors such as incorrect letters or misspellings. These metrics guide the optimization 
of ASR systems by providing a quantitative measure of transcription quality. 

8.2.3 Audio Classification 

Audio classification tasks involve categorizing audio signals into predefined classes. 
This could range from identifying the genre of a music track to recognizing envi-
ronmental sounds or identifying speakers. Transformers, with their ability to capture 
temporal dependencies and contextual information, are well suited for these tasks. 

Environmental Sound Classification 

Environmental sound classification involves identifying and categorizing sounds 
from the environment, such as footsteps, rain, or traffic noise. The goal is to map an 
audio signal to one of several predefined classes. 

Let .x = (x1, x2, . . . , xT ) represent the sequence of acoustic features extracted 
from an audio signal. The task is to predict the class. y of the sound, where. y belongs 
to a set of predefined categories . C. 

The transformer model processes the input sequence through its encoder, gen-
erating a sequence of hidden states .H = (h1, h2, . . . , hT ). The final classifica-
tion decision is made by aggregating these hidden states, often using a pooling 
mechanism: 

. ŷ = softmax (Pooling(H)) ,

where . ŷ is the predicted probability distribution over the classes, and the pooling 
operation (e.g., mean or max-pooling) reduces the sequence of hidden states to a 
single vector. 

Global pooling ensures that the classification decision is invariant to the length 
of the input sequence, making the model robust to variations in the duration of 
environmental sounds. Formally, if .Pooling(H) is invariant under permutations of 
the sequence, then 

. ŷ(x) = ŷ(σ (x)),

for any permutation .σ of the input sequence, ensuring consistent classification 
regardless of the sequence order. 

Example: In an environmental sound classification task, the transformer might 
be trained on a dataset containing various environmental sounds. The model learns 
to recognize patterns in the audio features that are characteristic of different sound 
classes, such as the frequency patterns associated with rain versus those of traffic 
noise.
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Music Genre Classification 

Music genre classification aims to categorize music tracks into genres such as jazz, 
classical, or rock. This task involves capturing both the temporal structure and 
harmonic content of the music, which transformers can effectively model. 

Similar to environmental sound classification, the input is a sequence of acoustic 
features .x = (x1, x2, . . . , xT ), extracted from the music track. The transformer pro-
cesses this sequence to produce hidden states .H = (h1, h2, . . . , hT ), which are then 
aggregated for classification: 

. ŷ = softmax (Pooling(H)) ,

where . ŷ represents the predicted genre distribution. 
Transformers can capture hierarchical features in music, from low-level acoustic 

features (e.g., timbre, rhythm) to high-level semantic features (e.g., style, genre). The 
hierarchical nature of transformers allows the model to build complex representations 
of the music, making it effective for genre classification: 

. hl
t = Layerl(hl−1

t ),

where.hl
t represents the hidden state at layer. l, capturing progressively more abstract 

features as . l increases. 
Example: A transformer-based music genre classifier might be trained on a large 

dataset of music tracks labeled by genre. The model learns to recognize patterns that 
are indicative of different genres, such as the rhythmic structure of hip-hop or the 
harmonic richness of classical music. 

Speaker Identification 

Speaker identification involves recognizing and verifying the identity of a speaker 
based on their voice. This task requires the model to capture unique vocal 
characteristics that distinguish one speaker from another. 

Given an input sequence of acoustic features.x = (x1, x2, . . . , xT ) extracted from 
a speech signal, the goal is to identify the speaker . y from a set of known speak-
ers . S. The transformer processes the input sequence to produce hidden states 
.H = (h1, h2, . . . , hT ), which are then used for classification: 

. ŷ = softmax (Pooling(H)) .

The transformer generates consistent speaker embeddings that are robust to vari-
ations in speech content, ensuring that the model accurately identifies the speaker 
regardless of what is being said: 

.ŷ(x) = ŷ(x′),



328 8 Signal Analysis and Transformers

where . x and .x′ are different utterances by the same speaker, and .ŷ(x) and .ŷ(x′) are 
the corresponding predicted speaker identities. 

Example: In a speaker identification system, the transformer might be trained 
on speech samples from multiple speakers. The model learns to recognize speaker-
specific characteristics, such as vocal pitch, timbre, and speaking style, which are 
used to distinguish between different speakers. 

8.2.4 Speech Synthesis and Enhancement 

Speech synthesis and enhancement involve generating or improving speech signals. 
Transformers are increasingly being used in these tasks due to their ability to model 
complex temporal dependencies and capture the nuances of natural speech. 

Text-to-Speech (TTS) Systems 

TTS systems convert written text into spoken language. Transformers can be used to 
model the mapping from text sequences to acoustic features, which are then converted 
into speech waveforms. 

Given an input text sequence .t = (t1, t2, . . . , tN ), where . ti represents a token 
(e.g., a word or phoneme), the transformer generates a sequence of acoustic features 
.x = (x1, x2, . . . , xT ), which are then converted to speech: 

. x = Decoder(t).

The generated speech signal .s(t) is then reconstructed from the acoustic features 
using a vocoder or waveform synthesis model. 

In TTS systems, the attention mechanism aligns the input text with the gener-
ated acoustic features, ensuring that each part of the text is correctly mapped to the 
corresponding speech segment: 

. ct =
N∑
i=1

αt,ihi ,

where.αt,i are the attention weights that align the input text token. ti with the generated 
acoustic feature . xt . 

Example: A transformer-based TTS system might generate natural-sounding 
speech by learning to map text sequences to acoustic features that capture the prosody, 
intonation, and rhythm of speech. The attention mechanism ensures that the spoken 
output corresponds accurately to the input text.



8.3 Applications and Analysis 329

Speech Enhancement and Noise Reduction 

Speech enhancement aims to improve the quality and intelligibility of speech signals, 
particularly in noisy environments. Transformers can be used to model the mapping 
from noisy speech to clean speech, effectively reducing background noise while 
preserving the speech content. 

Given a noisy speech signal .xnoisy = (x1, x2, . . . , xT ), the goal is to generate a 
clean speech signal .xclean = (x′

1, x′
2, . . . , x′

T ). The transformer processes the noisy 
signal to produce a denoised version: 

. xclean = Transformer(xnoisy).

The attention mechanism in the transformer helps focus on the speech components 
of the signal while ignoring or suppressing the noise components: 

. ct =
T∑
i=1

αt,ihi ,

where the attention weights .αt,i prioritize the parts of the input that contain speech, 
leading to effective noise suppression. 

Example: In a speech enhancement system, a transformer might be trained on pairs 
of noisy and clean speech signals. The model learns to distinguish between speech 
and noise, effectively enhancing the speech signal while reducing or eliminating the 
noise. 

8.3 Applications and Analysis 

The evaluation of audio and speech processing systems, particularly those involv-
ing transformers, requires robust performance metrics that quantify the quality and 
effectiveness of the models. This section focuses on two key metrics: Signal-to-Noise 
Ratio (SNR) and Perceptual Evaluation of Speech Quality (PESQ). These metrics 
provide quantitative and perceptual assessments of the audio signals processed by 
the models, ensuring that the systems meet the desired performance standards. 

8.3.1 Performance Metrics 

Performance metrics in audio and speech processing are essential for evaluating how 
well a model performs in enhancing, recognizing, or synthesizing speech. These 
metrics help quantify improvements in signal quality and intelligibility, allowing for 
comparison and optimization of different models.
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Signal-to-Noise Ratio (SNR) 

SNR is a fundamental metric used to measure the quality of a signal relative to the 
background noise. It quantifies how much stronger the signal is compared to the 
noise, providing a direct measure of the effectiveness of noise reduction or speech 
enhancement techniques. 

Given a clean signal .x(t) and a noisy signal .y(t) = x(t) + n(t), where . n(t)
represents the noise, the SNR is defined as 

. SNR = 10 log10

(∑T
t=1 x(t)

2

∑T
t=1 n(t)2

)
dB,

where .T is the duration of the signal. The numerator represents the power of the 
clean signal and the denominator represents the power of the noise. 

If a speech enhancement algorithm successfully reduces the noise .n(t) to .n′(t), 
resulting in an enhanced signal .y′(t) = x(t) + n′(t), the improvement in SNR, 
denoted as .	SNR, is given by 

. 	SNR = 10 log10

( ∑T
t=1 n(t)2∑T
t=1 n

′(t)2

)
dB.

This measure indicates how much the noise has been reduced relative to the 
original noisy signal. 

Example: In a speech enhancement system, SNR is used to evaluate how effec-
tively the system has suppressed background noise while preserving the speech 
signal. An increase in SNR after processing indicates better noise reduction. 

Perceptual Evaluation of Speech Quality (PESQ) 

While SNR provides a quantitative measure of signal quality, it does not fully capture 
the perceptual aspects of speech quality as experienced by human listeners. PESQ is 
a widely used metric that models human auditory perception to evaluate the quality 
of speech signals. 

PESQ compares a degraded speech signal .y(t) with a reference clean signal . x(t)
using a perceptual model that considers factors such as loudness, time alignment, 
and masking effects. The PESQ score is computed as 

. PESQ = f (x(t), y(t)),

where. f (·) represents the perceptual model that transforms the signals into an inter-
nal representation, compares them, and produces a quality score. The PESQ score 
typically ranges from –0.5 to 4.5, with higher scores indicating better speech quality.
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The PESQ metric is designed to be consistent with human judgments of speech 
quality. Mathematically, this means that if a speech enhancement algorithm improves 
the perceptual quality of speech, the PESQ score should increase accordingly: 

. PESQ(x(t), y′(t)) > PESQ(x(t), y(t)),

where .y(t) is the original degraded signal and .y′(t) is the enhanced signal. 
Example: In evaluating a TTS system, PESQ can be used to assess how natural 

and intelligible the generated speech sounds to human listeners. A high PESQ score 
indicates that the synthetic speech is of high quality and closely resembles natural 
human speech. 

8.3.2 Model Complexity 

The complexity of transformer models, particularly in terms of time and space, plays 
a significant role in their scalability and efficiency. Understanding these complexities 
allows for better design choices and comparisons with traditional models. 

Time Complexity 

Time complexity refers to the amount of time required for a transformer model to 
process an input sequence. For transformers, this is heavily influenced by the attention 
mechanism, which requires computing pairwise interactions between elements of the 
input sequence. 

Given an input sequence of length . T , the self-attention mechanism computes 
attention scores between every pair of elements, leading to a time complexity of 

. Time Complexity = O(T 2 · d),

where. d is the dimensionality of the input representations. This quadratic dependence 
on the sequence length can become a bottleneck, especially for long sequences. 

Various strategies have been proposed to reduce the time complexity of trans-
formers, particularly for long sequences. For instance, sparse attention mechanisms 
and low-rank approximations can reduce the complexity to sub-quadratic levels: 

. Time Complexity (Efficient Transformers) = O(T · d · log T ).

These strategies allow transformers to scale more effectively to long input 
sequences without sacrificing too much performance.
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In speech recognition tasks, where input sequences can be quite long (e.g., a full 
sentence or paragraph of spoken text), reducing time complexity is crucial for real-
time processing. Efficient transformer variants help achieve faster inference times 
while maintaining accuracy. 

Space Complexity 

Space complexity refers to the amount of memory required by a transformer model, 
which is also influenced by the attention mechanism due to the storage of attention 
scores and intermediate representations. 

For an input sequence of length. T and dimensionality . d, the space complexity of 
the self-attention mechanism is 

. Space Complexity = O(T 2 · d + T · d2).

The first term corresponds to the storage of the attention scores and the second 
term corresponds to the storage of the input and output representations. 

To mitigate the space complexity, memory-efficient transformer variants use tech-
niques such as reversible layers, which allow for intermediate activations to be 
recomputed during backpropagation rather than stored: 

. Space Complexity (Memory-Efficient Transformers) = O(T · d + d2).

These techniques significantly reduce the memory footprint, enabling the training 
of larger models on resource-constrained hardware. 

In large-scale speech synthesis tasks, where models must generate high-quality 
audio, reducing space complexity is essential to handle the extensive computations 
involved, especially when using high-dimensional representations. 

Comparison with Traditional Models 

Traditional models for audio and speech processing, such as Hidden Markov Models 
(HMMs) and Gaussian Mixture Models (GMMs) ([ 1, 4, 5]), have different com-
plexity profiles compared to transformers. Understanding these differences helps in 
evaluating the trade-offs between model expressivity and computational efficiency. 

For traditional HMM-based ASR systems, the time complexity is primarily linear 
with respect to the length of the input sequence: 

. Time Complexity (HMM) = O(T · S2),

where . S is the number of states in the HMM. The space complexity is similarly 
dependent on the number of states and the dimensionality of the feature space.
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Transformers, despite their higher time and space complexity, offer greater 
expressivity due to their ability to model long-range dependencies and context, 
which traditional models often struggle with. The trade-off is therefore between 
the computational cost and the representational power: 

. Expressivity (Transformers) > Expressivity (HMMs),

. Complexity (Transformers) > Complexity (HMMs).

In speaker identification tasks, transformers can leverage contextual information 
over long sequences, capturing nuances that traditional models might miss. However, 
this comes at the cost of increased computational resources, necessitating careful 
consideration of the application requirements. 

8.3.3 Optimization and Training Strategies 

The performance of transformer models in audio and speech processing heavily 
depends on the optimization and training strategies employed. These include the 
choice of loss functions, regularization techniques, and data augmentation methods 
tailored to the specific challenges of audio data. 

Loss Functions for Audio and Speech 

The choice of loss function is critical in training transformer models for audio and 
speech tasks, as it directly influences the learning dynamics and the model’s ability 
to generalize. 

For speech recognition tasks, the most commonly used loss function is the Con-
nectionist Temporal Classification (CTC) loss, which handles sequence alignment 
issues: 

. LCTC = − log
∑

π∈align(y)

P(π | x),

where .π represents possible alignments of the output sequence . y with the input 
sequence . x. 

In speech synthesis, the Mean Squared Error (MSE) between the predicted and 
target acoustic features is commonly used: 

. LMSE = 1

T

T∑
t=1

(xt − x̂t )
2,

where .x̂t is the predicted feature and .xt is the target.
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The CTC loss function is designed to converge even when the alignment between 
input and output sequences is unknown, making it particularly effective for end-to-
end ASR models: 

. lim
t→∞LCTC = 0 if the model learns the correct alignment.

Example: In training a transformer-based ASR model, CTC loss helps the model 
learn to align audio frames with corresponding phonemes or words, leading to 
accurate transcriptions even without explicit alignment information. 

Regularization Techniques 

Regularization is crucial for preventing overfitting, especially in large transformer 
models that are prone to learning spurious patterns in the data. 

Dropout is a widely used regularization technique where units in the neural 
network are randomly dropped during training: 

. h(l)
t = Dropout(h(l)

t ),

where.h(l)
t is the hidden state at layer. l. Dropout forces the model to learn more robust 

features that do not rely on specific neurons. 
Weight decay is another regularization technique that penalizes large weights by 

adding a term to the loss function: 

. Lreg = L + λ‖W‖22,

where .W represents the model weights and . λ is a regularization parameter. 
Regularization techniques like dropout and weight decay improve the generaliza-

tion ability of transformer models by preventing overfitting: 

. Generalization Error (Regularized Model) < Generalization Error (Unregularized Model).

Example: In speech enhancement tasks, regularization helps the model generalize 
across different noise conditions, ensuring that it performs well not only on the 
training data but also on unseen noisy environments. 

Data Augmentation for Audio 

Data augmentation is a technique used to artificially increase the size of the training 
dataset by applying transformations to the original data. This is particularly important 
in audio tasks, where annotated data can be scarce.
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Common data augmentation techniques for audio include time-stretching, pitch-
shifting, and adding background noise: 

. x′ = Augment(x),

where . x is the original audio signal and . x′ is the augmented version. 
For example, time-stretching changes the speed of the audio without altering its 

pitch: 
. x′(t) = x(αt),

where . α is a time-stretching factor. 
Data augmentation enhances the robustness of transformer models by exposing 

them to a wider variety of input conditions during training: 

. Robustness (Augmented Model) > Robustness (Non-Augmented Model).

Example: In music genre classification, applying data augmentation techniques 
such as pitch-shifting allows the model to recognize genres even when the pitch of 
the music varies, improving the model’s robustness and generalization. 

8.4 Further Topics 

As the field of audio and speech processing continues to evolve, researchers are 
exploring advanced topics that push the boundaries of current methodologies. This 
section examines hybrid models that combine transformers with traditional signal 
processing techniques, as well as the development of efficient transformers specif-
ically tailored for signal processing tasks. These approaches aim to enhance the 
capabilities of transformers while addressing their computational challenges. 

8.4.1 Hybrid Models 

Hybrid models seek to leverage the strengths of both transformers and traditional 
signal processing techniques, creating a synergy that can address the limitations 
of each individual approach. This section provides a mathematical formulation of 
such hybrid models and explores their potential applications in audio and speech 
processing.
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Combining Transformers with Traditional Signal Processing Techniques 

Traditional signal processing techniques, such as Fourier transforms, wavelet trans-
forms, and filtering methods, have long been used to analyze and manipulate audio 
signals. These techniques are well understood, computationally efficient, and effec-
tive for specific tasks, but they may lack the representational power needed to capture 
complex patterns in data. Transformers, on the other hand, excel at modeling long-
range dependencies and capturing contextual information but can be computationally 
intensive. 

A hybrid model combines a traditional signal processing technique .T with a 
transformer model .M, where .T preprocesses the input signal . x, and .M processes 
the transformed signal to produce the final output: 

. z = T (x),

. y = M(z),

where . z represents the signal processed by .T (e.g., a frequency-domain rep-
resentation) and .y is the output of the transformer (e.g., a classification or 
prediction). 

For a hybrid model to be effective, the traditional signal processing technique . T
must preserve the essential features of the signal that are relevant for the transformer’s 
task. This can be formalized as a preservation theorem, where . z retains the key 
information from. x: 

. ∃ f : y = f (x) =⇒ ∃ g : y = g(z),

where . f and . g are mappings that relate the original signal . x and the transformed 
signal . z to the final output . y. 

Example: In speech enhancement, a hybrid model might first apply a wavelet trans-
form to the input speech signal to capture time-frequency characteristics, followed by 
a transformer that models the temporal dependencies in the wavelet coefficients. This 
approach leverages the wavelet transform’s ability to localize features in time and 
frequency while utilizing the transformer’s capacity for context-aware processing. 

Mathematical Formulation of Hybrid Models 

The mathematical foundation of hybrid models requires a careful integration of 
signal processing techniques with transformer architectures. The challenge lies in 
ensuring that the output of the signal processing stage is compatible with the input 
requirements of the transformer. 

Let .x ∈ R
T be an input signal (e.g., a time-domain audio signal). A traditional 

signal processing technique .T transforms . x into a feature space .R
F :
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. z = T (x) ∈ R
F ,

where .F depends on the nature of the transformation (e.g., .F might represent the 
number of frequency bins in a Fourier transform). 

The transformer model .M then processes . z through its layers, each of which is 
a combination of linear transformations, self-attention mechanisms, and non-linear 
activations: 

. h(l) = Attention
(

W(l)
q z, W(l)

k z, W(l)
v z

)
+ b(l),

. y = M(z) = Woh(L) + bo,

where .W(l)
q , W(l)

k , W(l)
v , andWo are the weight matrices at the .l-th layer of the 

transformer, and . L is the total number of layers. 
For the hybrid model to function effectively, the output space of the signal pro-

cessing technique .T must be compatible with the input space of the transformer 
model .M. This compatibility can be expressed as 

. ∃ T ,M such that M(T (x)) = y,

where . y is the desired output (e.g., a classification label or enhanced signal). This 
condition ensures that the features extracted by.T are suitable for the transformer to 
process. 

Example: In music genre classification, a hybrid model might first apply a Fourier 
transform to the audio signal, converting it into a spectrogram. The transformer then 
processes the spectrogram, capturing the temporal patterns in the frequency domain 
that correspond to different musical genres. The Fourier transform reduces the input 
complexity by focusing on the frequency content, while the transformer captures the 
genre-specific temporal dependencies. 

8.4.2 Efficient Transformers for Signal Processing 

Transformers, while powerful, are computationally intensive, particularly for long 
sequences common in audio processing. Efficient transformers aim to reduce the 
computational burden while maintaining performance, making them more practical 
for real-time and large-scale applications. 

Efficient transformers typically reduce the time and space complexity of the self-
attention mechanism by approximating the full attention matrix or by using sparsity 
in the attention computation. One approach is to replace the full attention mechanism 
with a sparse attention mechanism: 

.Asparse = SparseAttention(Q, K, V),
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where.Asparse is a sparse matrix that approximates the full attention matrix. A by only 
considering a subset of the key-value pairs. 

The efficiency of sparse attention mechanisms comes at the cost of some approx-
imation error. The error introduced by using sparse attention instead of full attention 
can be bounded as 

. ‖A − Asparse‖F ≤ ε‖A‖F ,

where . ε is a small positive constant representing the approximation error and . ‖ · ‖F

denotes the Frobenius norm. 
Example: In real-time speech recognition systems, efficient transformers might 

use locality-sensitive hashing (LSH) to approximate the attention mechanism, reduc-
ing the time complexity from.O(T 2) to.O(T log T ). This allows the model to process 
longer sequences in real time without compromising the accuracy of the recognition. 
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Chapter 9 
Advanced Topics and Future Directions 

9.1 Memory Optimization 

As transformer models grow in complexity and size, memory optimization becomes 
a critical concern. Efficiently managing memory resources is essential for train-
ing large-scale models, ensuring that they remain computationally feasible without 
sacrificing performance. This section delves into the mathematical principles behind 
efficient memory storage and retrieval, particularly in the context of large-scale mod-
els, and explores the practical implementation of sparse transformers as a means of 
reducing memory usage. 

9.1.1 Efficient Storage and Retrieval 

Memory efficiency in transformer models involves not only reducing the mem-
ory footprint during training but also ensuring that the retrieval of stored infor-
mation is fast and precise. This requires a careful balance between memory usage, 
computational complexity, and the fidelity of the stored information. 

Consider a transformer model with . L layers, each layer producing hidden states 
.H(l) of size .n × d, where . n is the sequence length and . d is the dimensionality. The 
total memory required for storing these hidden states is 

. Memory = L × n × d × sizeof(datatype),

where the datatype could be FP32, FP16, or another precision format. 
Efficient Storage Techniques: 
1. Gradient checkpointing is a technique that reduces memory usage by selectively 

storing intermediate activations during the forward pass and recomputing them during 
the backward pass. Let . C be the set of layers for which activations are stored, and 
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.R = L − C be the layers for which activations are recomputed. The total memory 
required with checkpointing is 

. Memorycheckpoint = |C| × n × d + RecomputationCost,

where.RecomputationCost accounts for the additional computational overhead. The 
memory savings .Smem achieved through checkpointing is 

. Smem = L × n × d − |C| × n × d,

showing that significant memory savings can be achieved at the cost of additional 
recomputation during backpropagation. 

2. Quantization reduces the precision of model parameters and activations, thereby 
reducing the memory required to store them. Quantization maps a high precision 
value . x to a lower precision value . x̃ : 

. x̃ = Quantize(x) = round

(
x − xmin

�

)
,

where .� is the quantization step size and .xmin is the minimum value of the range 
being quantized. If.sizeof(FP32) and.sizeof(FP16) denote the memory requirements 
for 32-bit and 16-bit floating-point representations, the memory reduction . Rquant

through quantization to FP16 is 

. Rquant = sizeof(FP32)

sizeof(FP16)
= 2.

Quantization can halve the memory requirements while introducing only minimal 
degradation in model performance. 

In large-scale transformers like GPT-3, memory optimization techniques such as 
checkpointing and quantization are crucial for enabling the training of models with 
billions of parameters. These techniques allow models to be trained on hardware with 
limited memory resources, ensuring that the models remain scalable and efficient. 

9.1.2 Implementation in Large-Scale Models 

Implementing memory optimization strategies in large-scale transformer models 
requires careful consideration of the trade-offs between memory usage, computa-
tional overhead, and model performance. These strategies must be integrated seam-
lessly into the training process to ensure that they provide tangible benefits without 
introducing significant complexities. 

Consider a large-scale transformer with parameters . θ distributed across multiple 
devices. The total memory required for storing the model parameters is
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. Memoryparams =
L∑

i=1

sizeof(θ (i)),

where .θ(i) represents the parameters of the .i-th layer. 
Memory Optimization Techniques: 
1. Model parallelism can be combined with memory optimization techniques such 

as checkpointing and quantization to distribute both the computation and memory 
usage across multiple devices. Let .W be a large weight matrix partitioned across 
. p devices. With quantization applied, the memory required for storing .W on each 
device is 

. Memoryquant = 1

p
× sizeof(W)

2
,

where the factor . 12 comes from quantization to FP16. 
2. Dynamic memory management involves allocating and deallocating memory 

resources on the fly based on the current requirements of the model, ensuring that 
memory is used efficiently throughout the training process. Let .M(t) represent the 
memory usage at time . t during training. Dynamic memory management seeks to 
minimize the peak memory usage: 

. Mpeak = max
t

M(t),

by efficiently reallocating memory as different layers and operations are executed. 
Dynamic memory management can significantly reduce the peak memory usage 

by ensuring that memory is allocated only when needed and deallocated immediately 
after use. This leads to more efficient utilization of available resources. 

In training large-scale models like T5 or BERT-Large, dynamic memory man-
agement combined with model parallelism and quantization enables the training of 
models with over a billion parameters, even on hardware with constrained memory 
resources. These techniques ensure that the training process remains feasible and 
efficient, allowing for the exploration of even larger and more powerful models. 

9.1.3 Sparse Transformers in Practice 

Sparse transformers leverage sparsity in the attention mechanism to reduce compu-
tational and memory overhead, making them more suitable for practical applications 
involving long sequences or large datasets. By focusing on the most relevant parts of 
the input, sparse transformers maintain performance while significantly improving 
efficiency. 

In a sparse transformer, the attention matrix .A ∈ R
n×n , which typically has 

quadratic complexity, is replaced with a sparse matrix .As that has fewer non-zero 
elements:
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. As = SparseMask(A),

where .SparseMask is a function that retains only a subset of the elements in . A, 
typically those corresponding to the most relevant tokens. 

The complexity of sparse attention is reduced from.O(n2d) to.O(n · k · d), where 
. k is the number of tokens each token attends to. If .k � n, the computational savings 
are significant: 

. 
ComplexitySparse
ComplexityDense

≈ k

n
.

In natural language processing tasks, such as document classification or sum-
marization, sparse transformers can efficiently process long documents by focusing 
attention on the most informative sentences or paragraphs, leading to faster inference 
times and lower memory usage without sacrificing accuracy. 

9.2 Transformers in Reinforcement Learning 

Reinforcement Learning (RL) involves learning to make decisions by interacting 
with an environment to maximize cumulative rewards ([ 5, 8, 10, 12]). The use of 
transformers in RL is an emerging area that leverages the model’s ability to cap-
ture long-term dependencies and complex patterns in sequential data. This section 
explores the mathematical foundations of applying transformers in RL, focusing on 
state representation, representation learning, and temporal abstractions. These con-
cepts are crucial for building models that can effectively learn from and adapt to 
dynamic environments. 

9.2.1 Mathematical Modeling 

The integration of transformers into RL frameworks requires a careful mathematical 
formulation to capture the complexities of sequential decision-making. This involves 
modeling the state representation, learning meaningful representations of the envi-
ronment, and incorporating temporal abstractions that allow the model to plan and 
act over multiple time scales. 

State Representation 

In RL, the state. st at time. t encapsulates all relevant information from the environment 
necessary to make a decision. The transformer model, with its attention mechanisms, 
provides a powerful tool for encoding this state, particularly when the state is derived 
from a sequence of observations.
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Let .S be the state space and .st ∈ S be the state at time . t . In a transformer-
based RL model, the state is represented as a sequence of past observations . Ot =
(o1, o2, . . . , ot ), where each observation .oi ∈ O is part of the observation space . O. 
The state representation . st is then given by 

. st = ftransformer(Ot ) = LayerNorm

(
t∑

i=1

αi,toi

)
,

where .αi,t are the attention weights computed by the transformer, indicating the 
importance of each past observation .oi in determining the current state. 

The transformer’s state representation is capable of capturing complex dependen-
cies in the observation sequence. Formally, let .H(st ) denote the set of possible state 
representations generated by the transformer. The expressivity theorem states that 

. H(st) ⊇ HRNN(st ),

where.HRNN(st ) represents the set of state representations possible with RNNs. This 
indicates that transformers can model all the dependencies captured by RNNs, and 
more, due to their global attention mechanism. 

In an RL task like autonomous driving, where the state is derived from a sequence 
of visual and sensory inputs, the transformer’s ability to attend to relevant observa-
tions (e.g., traffic lights, road signs) across the sequence allows for a more nuanced 
and effective state representation, leading to better decision-making. 

Representation Learning for RL 

Effective representation learning in RL involves discovering compact, meaningful 
representations of the environment that facilitate decision-making. Transformers 
excel at learning such representations by capturing the relationships and patterns 
within the sequence of observations. 

Let .E be the environment, and let .T (E) represent the set of trajectories, 
where each trajectory .τ ∈ T (E) consists of a sequence of states and actions: 
.τ = {(s1, a1), (s2, a2), . . . , (sT , aT )}. The transformer’s objective in representation 
learning is to encode the trajectory. τ into a representation. z that captures the essential 
features for predicting future states and actions: 

. z = gtransformer(τ ) = MLP

(
LayerNorm

(
T∑
t=1

αtst

))
,

where . st is the state at time . t and .αt are the attention weights. 
Transformers can learn representations that preserve the Markov property, which 

is critical for RL algorithms. Specifically, for any Markov decision process (MDP)
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with state transition dynamics .P(st+1 | st , at ), the representation . z learned by the 
transformer satisfies 

. P(st+1 | z, at ) = P(st+1 | st , at ),

indicating that the representation . z retains all necessary information for predicting 
the next state. 

In a robotics RL task, where the environment’s state is high dimensional (e.g., 
images or point clouds), transformers can learn compact embeddings of these states 
that preserve the relevant information for action selection, thus improving the robot’s 
ability to perform tasks like object manipulation or navigation. 

Temporal Abstractions 

Temporal abstractions allow the model to operate over different time scales, making 
decisions that account for both immediate and long-term consequences. Transformers 
naturally lend themselves to this due to their ability to model long-range dependencies 
in sequences. 

Temporal abstractions in RL involve defining higher-level actions or options that 
extend over multiple time steps. Let. O represent the set of options, where each option 
.o ∈ O is a temporally extended action. The transformer can model the initiation and 
termination of options through its attention mechanism: 

. qo =
T∑
t=1

αo
t st ,

where.qo is the query vector associated with option. o and.αo
t are the attention weights 

specific to this option. 
Transformers can represent temporal abstractions by assigning different attention 

patterns to different time scales. Formally, let .A(st ) represent the set of possible 
actions, including temporally extended options. The transformer-based policy. π that 
incorporates temporal abstractions is defined as 

. π(at | st ) =
∑
o∈O

βoπo(at | qo),

where.βo is the probability of selecting option. o and.πo is the policy associated with 
that option. This allows the model to plan over multiple time scales effectively. 

In hierarchical RL tasks, such as playing a strategy game, transformers can learn 
to abstract short-term actions into higher-level strategies that span several moves, 
enabling more strategic planning and better overall performance.
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Policy Learning 

Policy learning in RL involves learning a mapping from states to actions, which 
guides the agent’s behavior in the environment. This mapping, or policy, is often 
represented as a probability distribution over actions, conditioned on the current 
state. Transformers, with their ability to model sequential dependencies, can be used 
to learn such policies, especially in environments where the state representation 
involves sequences of observations. 

Let .π(at | st ; θ) represent the policy, parameterized by . θ , which gives the prob-
ability of taking action .at given state . st at time . t . The objective in policy learning 
is to maximize the expected cumulative reward .E[∑T

t=1 rt ], where . rt is the reward 
received at time . t . 

The transformer’s attention mechanism can be used to represent the policy by 
considering the sequence of past states and actions: 

. π(at | st ; θ) = softmax

(
LayerNorm

(
t∑

i=1

αi,tsi

))
,

where . si represents the state at time . i and .αi,t are the attention weights learned by 
the transformer. 

Under certain conditions, transformers can represent the optimal policy . π∗(at |
st ) that maximizes the expected cumulative reward. Specifically, given sufficient 
capacity, the transformer can approximate the policy function to arbitrary precision, 
capturing the necessary temporal dependencies in the sequence of states and actions. 

In a game-playing environment like chess, where the state is represented by the 
sequence of moves leading up to the current position, a transformer-based policy can 
effectively model the complex dependencies between moves and select actions that 
maximize the chance of winning. 

Policy Gradient Methods 

Policy gradient methods are a class of RL algorithms that optimize the policy directly 
by computing gradients of the expected reward with respect to the policy parameters. 
These methods are particularly well suited for environments with continuous or 
high-dimensional action spaces. 

The objective in policy gradient methods is to maximize the expected cumulative 
reward .J (θ) = Eπθ

[∑T
t=1 rt ] with respect to the policy parameters . θ . The policy 

gradient is given by 

. ∇θ J (θ) = Eπθ

[
T∑
t=1

∇θ logπ(at | st ; θ)Rt

]
,

where .Rt = ∑T
k=t rk is the return starting from time . t .
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Under the assumption that the policy.π(at | st ; θ) is differentiable with respect to 
. θ , and that the learning rate . η satisfies certain conditions (e.g., .

∑
ηt = ∞, . 

∑
η2
t <

∞), the policy gradient method converges to a local maximum of .J (θ). 
In a continuous control task like robotic arm manipulation, where the actions are 

continuous valued (e.g., joint angles), policy gradient methods using transformers 
can effectively learn policies that maximize the reward, such as successfully grasping 
and moving objects. 

Value-Based Methods 

Value-based methods in RL involve learning a value function that estimates the 
expected return from a given state or state–action pair. The policy is then derived 
indirectly from the value function, typically by selecting actions that maximize the 
estimated value. 

The value function.V π (st ) under policy. π is defined as the expected return starting 
from state . st : 

. V π (st ) = Eπ

[
T∑
k=t

rk | st
]

.

Similarly, the action-value function .Qπ (st , at ) is defined as the expected return 
starting from state . st and taking action . at : 

. Qπ (st , at ) = Eπ

[
T∑
k=t

rk | st , at
]

.

The optimal policy .π∗ is derived by selecting actions that maximize .Qπ : 

. π∗(at | st ) = argmax
at

Qπ (st , at ).

Transformers can be used to approximate the value function.V π (st )or action-value 
function.Qπ (st , at ). The Bellman optimality equation, which defines the relationship 
between the value functions at consecutive time steps, holds for the transformer-based 
approximation: 

. Qπ (st , at ) = rt + γEst+1∼P

[
max
at+1

Qπ (st+1, at+1)

]
,

where . γ is the discount factor and .P is the state transition probability. 
In an environment like Atari games, where the state is represented by a sequence 

of frames, transformers can be used to approximate the value function, guiding the 
agent to take actions that maximize the score.
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9.2.2 Applications and Analysis 

The application of transformers in RL spans various domains, from games and 
robotics to finance and healthcare. The flexibility of transformers in modeling sequen-
tial data makes them particularly powerful in environments where decisions depend 
on long-term planning and context. 

Transformers in RL provide several advantages, including the ability to model 
long-range dependencies in state sequences and the flexibility to handle various types 
of action spaces. The mathematical foundations explored in this chapter, including 
policy gradients and value-based methods, underscore the potential of transformers 
to revolutionize RL by offering more robust and scalable solutions. 

Applications: 
1. Games: Transformers can be used to model strategies in complex games like 

Go or StarCraft, where the state space is vast, and decisions depend on the entire 
sequence of past moves. 

2. Robotics: In robotic tasks requiring precision and adaptability, transformers 
help in learning policies that can handle diverse scenarios by modeling the sequential 
nature of sensor inputs and actions. 

3. Finance: Transformers can be employed in trading algorithms, where the state 
is represented by historical price sequences, and actions correspond to buy/sell 
decisions. The model learns policies that maximize profit while managing risk. 

Transformers for Model-Free RL 

Model-free RL involves learning policies or value functions directly from interac-
tion with the environment, without explicitly modeling the environment’s dynam-
ics. Transformers in this context can be used to enhance policy learning and value 
estimation by processing sequences of states, actions, and rewards. 

In model-free RL, the objective is to learn a policy .π(at | st ; θ) or a value func-
tion .V π (st ; θ) that maximizes the expected cumulative reward. The transformer, 
with its attention mechanism, can be used to process a history of observations 
.Ot = (o1, o2, . . . , ot ) to produce a state representation . st : 

. st = ftransformer(Ot ) = LayerNorm

(
t∑

i=1

αi,toi

)
,

where .αi,t are attention weights. 
The policy or value function can then be defined as 

. π(at | st ; θ) = softmax(gπ(st ; θ))

or 
.V π (st ; θ) = gV (st ; θ),
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where .gπ and.gV are functions parameterized by . θ that map the state representation 
to action probabilities or value estimates. 

Given a sufficiently expressive transformer model, the policy gradient methods 
or value iteration methods converge to a locally optimal policy or value function. 
The transformer’s ability to model long-term dependencies ensures that it can learn 
from sequences of observations that span multiple time steps, capturing relevant 
information for decision-making. 

In a robotic control task where actions must be selected based on a sequence of 
sensor readings, transformers can process these readings as a sequence and learn 
a policy that maps the processed sequence to control actions, leading to improved 
performance in tasks such as navigation or manipulation. 

Transformers for Model-Based RL 

Model-based RL involves learning a model of the environment’s dynamics, which is 
then used to plan and make decisions. Transformers can be used in model-based RL 
to learn complex environment dynamics by processing sequences of states, actions, 
and rewards. 

In model-based RL, the environment is typically modeled by a transition function 
.P(st+1 | st , at ) and a reward function.R(st , at ). The transformer can be employed to 
model these functions by processing sequences of states and actions: 

. ŝt+1 = ftransformer ((s1, a1), (s2, a2), . . . , (st , at )) ,

where .ŝt+1 is the predicted next state. 
The planning process involves using the learned model to simulate future 

trajectories and optimize the policy accordingly: 

. π∗(at | st ) = argmax
π

EP̂

[
T∑
k=t

R(ŝk, π(ŝk))

]
,

where .P̂ is the learned transition model. 
The accuracy of the environment model learned by the transformer directly 

impacts the performance of the model-based RL. If the transformer can accurately 
predict the environment dynamics, the resulting policy will closely approximate the 
optimal policy. 

In a simulated environment like a video game, where the environment’s dynamics 
are complex and involve long sequences of actions leading to rewards, transform-
ers can be used to model these dynamics and plan effective strategies, improving 
performance in the game.
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Case Studies in Reinforcement Learning 

Case studies demonstrate the practical application of transformers in various RL 
settings, providing insights into their effectiveness and versatility. These studies 
highlight how transformers can be adapted to different RL challenges, from simple 
control tasks to complex decision-making scenarios. 

Each case study involves the application of transformers in a specific RL 
environment, with the following steps: 

1. State Representation: Using transformers to encode the sequence of observa-
tions or states. 

2. Policy Learning or Planning: Applying policy gradient or value-based methods 
in model-free RL, or planning with a learned model in model-based RL. 

3. Evaluation: Assessing the performance of the transformer-based RL model 
against traditional methods. 

Case Studies: 
1. Autonomous Driving: Transformers are used to encode sequences of sensor 

data (e.g., LIDAR, camera images) and learn policies that allow a vehicle to navigate 
complex environments safely and efficiently. 

2. Strategic Games: In games like chess or Go, transformers model the sequence of 
moves and plan strategies that consider long-term consequences, leading to high-level 
play. 

3. Industrial Control: Transformers are applied to process sequences of sensor 
readings and control signals in manufacturing processes, optimizing production 
efficiency and reducing downtime. 

Performance Metrics and Evaluation 

Evaluating the performance of transformer-based RL models involves an analysis 
of various metrics, including cumulative reward, stability, generalization, and com-
putational efficiency. These metrics are crucial for understanding the strengths and 
limitations of transformers in RL. 

Performance metrics in RL can be broadly categorized as follows: 
1. Cumulative Reward: The total reward accumulated over a sequence of actions, 

defined as 

. GT =
T∑
t=1

rt ,

where . rt is the reward at time . t . 
2. Stability: The consistency of the learned policy across different training runs, 

often measured by the variance in cumulative rewards. 
3. Generalization: The ability of the learned policy to perform well on unseen 

environments or tasks, evaluated by testing the model on variations of the training 
environment.
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4. Computational Efficiency: The time and resources required to train the model, 
often evaluated by the number of iterations or the time taken to converge. 

Given that transformers can model complex dependencies in RL tasks, the per-
formance improvement (in terms of cumulative reward) from using transformers is 
bounded by the accuracy of the state or environment model they learn. Formally, if 
. ε represents the model error, the improvement in cumulative reward is bounded by 

. �GT ≤ 1

1 − γ
· ε,

where . γ is the discount factor. 
In an RL task like robot arm control, performance metrics such as cumulative 

reward and stability can be used to evaluate how well the transformer-based policy 
handles different objects and tasks, with generalization measured by testing on new, 
unseen objects. 

9.3 Convergence of Transformer Models: A Dynamical 
Systems Perspective 

The convergence properties of transformer models can be analyzed using concepts 
from dynamical systems theory. By viewing the training dynamics of transformers as 
trajectories in a high-dimensional phase space, we can gain insights into their stability, 
convergence behavior, and the existence of fixed points. This section introduces 
the fundamental concepts of dynamical systems and applies them to the study of 
transformer models. 

9.3.1 Introduction to Dynamical Systems 

Dynamical systems theory ([ 2, 4, 6, 11]) provides a mathematical framework for 
analyzing the behavior of systems that evolve over time according to a set of deter-
ministic rules. In the context of transformer models, the training process can be seen 
as a dynamical system where the parameters of the model evolve under the influence 
of gradients derived from the loss function. 

A dynamical system can be described by a set of differential equations: 

. 
dx(t)
dt

= f(x(t), t),

where .x(t) ∈ R
n represents the state of the system at time . t and . f : Rn × R → R

n

is a function that defines the evolution of the system.
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In the context of transformers,.x(t) can represent the model parameters at training 
iteration. t and.f(x(t), t) corresponds to the gradient of the loss function with respect 
to the parameters: 

. f(x(t)) = −∇θL(θ(t)),

where .L(θ(t)) is the loss function at iteration . t and .θ(t) represents the model 
parameters. 

Phase Space and Trajectories 

The phase space of a dynamical system is a mathematical space in which all possible 
states of the system are represented. Each point in this space corresponds to a unique 
state of the system, and the trajectory of the system represents the path taken by the 
system as it evolves over time. 

Let .X ⊂ R
n be the phase space of the dynamical system, where . n is the dimen-

sionality of the state vector .x(t). The trajectory .γ (t) of the system is a curve in . X
defined by the solution to the differential equation: 

. γ (t) = x(t),

with initial condition .x(0) = x0. 
In transformer training, the trajectory of the model parameters .θ(t) in the phase 

space corresponds to the sequence of parameter updates driven by gradient descent: 

. θ(t + 1) = θ(t) − η∇θL(θ(t)),

where . η is the learning rate. Under certain conditions, such as Lipschitz continuity 
of.f(x(t)), the trajectory.γ (t) is uniquely determined by the initial condition. x0.  This  
implies that the evolution of the transformer parameters during training is well defined 
and predictable, given the initial parameter values and the loss landscape. Consider 
a simple transformer model with a small number of parameters. The phase space in 
this case might be a low-dimensional space, allowing us to visualize the trajectory of 
the parameters during training. As the training progresses, the trajectory will ideally 
move toward a region of lower loss, corresponding to better model performance. 

Fixed Points and Stability 

Fixed points in a dynamical system are states where the system remains unchanged 
over time, meaning that once the system reaches a fixed point, it will stay there. In 
the context of transformers, fixed points correspond to model parameters where the 
gradient of the loss function is zero, indicating that the model has reached a state of 
equilibrium.
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A fixed point .x∗ of the dynamical system is defined by the condition: 

. f(x∗) = 0.

In transformer training, a fixed point .θ∗ occurs when the gradient of the loss 
function vanishes 

. ∇θL(θ∗) = 0.

The stability of a fixed point can be analyzed by examining the eigenvalues of 
the Jacobian matrix .J(x∗) of the dynamical system at the fixed point. The Jacobian 
matrix is given by 

. J(x∗) = ∂f
∂x

∣∣∣∣
x=x∗

.

A fixed point .x∗ is stable if all the eigenvalues of .J(x∗) have negative real parts. 
If any eigenvalue has a positive real part, the fixed point is unstable, meaning that 
small perturbations will cause the system to move away from the fixed point. 

In the training of a transformer, a stable fixed point corresponds to a set of param-
eters where the model has converged to a local minimum of the loss function. If the 
fixed point is unstable, the training process may diverge, or the model may oscillate 
around the fixed point without converging. 

9.3.2 Lyapunov Exponents and Stability Analysis 

Lyapunov exponents are critical tools in analyzing the stability of dynamical systems. 
They measure the rate at which nearby trajectories converge or diverge in phase space, 
providing a quantitative assessment of stability. In the context of transformer models, 
Lyapunov exponents help us understand how perturbations in model parameters 
evolve during training, influencing the convergence and stability of the learning 
process. 

Lyapunov Functions and Stability Criteria 

Lyapunov functions are scalar functions used to prove the stability of a dynami-
cal system. A Lyapunov function .V (x) decreases along trajectories of the system, 
indicating that the system is moving toward a stable equilibrium. 

A Lyapunov function .V : Rn → R for a dynamical system.ẋ = f(x) satisfies the 
following conditions: 

1. .V (x) > 0 for all .x 
= x∗ and .V (x∗) = 0, where .x∗ is an equilibrium point. 
2. The time derivative of.V (x) along the trajectories of the system is non-positive: 

.V̇ (x) = ∇V (x) · f(x) ≤ 0.



9.3 Convergence of Transformer Models: A Dynamical Systems Perspective 353

If.V̇ (x) < 0 for all.x 
= x∗, the equilibrium point.x∗ is globally asymptotically stable. 
If there exists a Lyapunov function .V (x) for the dynamical system .ẋ = f(x), 

then the equilibrium point .x∗ is stable. If .V̇ (x) < 0, the equilibrium is globally 
asymptotically stable. 

In the context of transformer models, consider a simplified gradient descent sce-
nario where the parameter update rule is.θt+1 = θt − η∇θL(θt ). A potential Lyapunov 
function is the loss function itself .V (θ) = L(θ), as it decreases along trajectories of 
gradient descent: 

. V̇ (θ) = ∇θL(θ) · θ̇ = −η‖∇θL(θ)‖2 ≤ 0.

This indicates that the system is moving toward a minimum of the loss function, 
contributing to the stability of the learning process. 

Applications to Neural Networks 

In neural networks, Lyapunov exponents can be used to assess the stability of learn-
ing dynamics. A positive Lyapunov exponent indicates chaotic behavior, where small 
perturbations in the input or parameter space lead to exponentially diverging trajec-
tories, making learning unpredictable. Negative exponents suggest that trajectories 
converge, indicating stable learning dynamics. 

The Lyapunov exponent . λ for a trajectory .x(t) is defined as 

. λ = lim
t→∞

1

t
ln

‖δx(t)‖
‖δx(0)‖ ,

where.δx(t) is an infinitesimal perturbation in the initial conditions. In the context of a 
transformer model, this can be interpreted as the sensitivity of the model’s parameters 
to small changes during training. 

For a neural network, including transformers, if all Lyapunov exponents are neg-
ative, the training process is stable, leading to convergence toward a local or global 
minimum of the loss function. If any Lyapunov exponent is positive, the system may 
exhibit chaotic behavior, potentially leading to non-convergence or unpredictable 
outcomes. 

In a transformer model with many layers, the gradients can become highly sensi-
tive to small perturbations due to the depth of the model. By calculating the Lyapunov 
exponents, we can determine whether the model is likely to exhibit stable learning 
or if it is prone to chaotic dynamics, which could explain phenomena like exploding 
or vanishing gradients.
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9.3.3 Chaos Theory and Non-linear Dynamics 

Chaos theory ([ 1, 3, 7, 9, 11]) studies the behavior of dynamical systems that are 
highly sensitive to initial conditions, a property known as the “butterfly effect.” In 
machine learning, particularly in deep learning models like transformers, under-
standing chaotic dynamics can provide insights into the complexities of the learning 
process and the potential for irregular behavior. 

Bifurcations and Attractors 

Bifurcations occur when a small change in the system’s parameters causes a sud-
den qualitative change in its behavior. Attractors are sets toward which a system 
tends to evolve, regardless of the initial conditions. These concepts are crucial for 
understanding how transformer models behave under different training regimes and 
parameter settings. 

A bifurcation in a dynamical system occurs when a parameter. μ is varied, leading 
to a qualitative change in the structure of its phase space. The system’s equation is 
generally of the form: 

. 
dx
dt

= f(x, μ).

An attractor is a set .A ⊂ X in phase space such that trajectories starting near . A
remain close to.A as.t → ∞. Common types of attractors include fixed points, limit 
cycles, and strange attractors. 

When a bifurcation occurs, the stability of fixed points or periodic orbits can 
change. For example, a supercritical pitchfork bifurcation leads to the emergence of 
a stable fixed point, while a subcritical bifurcation can lead to the sudden appearance 
of chaotic dynamics. 

In the training of transformers, a bifurcation could occur when adjusting hyperpa-
rameters such as the learning rate or model depth. A small change in these parameters 
might lead to a transition from stable learning (convergence) to chaotic learning (non-
convergence), where the model’s performance becomes highly sensitive to initial 
conditions or noise. 

Implications for Learning Dynamics 

Understanding bifurcations and attractors in the context of transformer models allows 
us to predict and control the learning dynamics. By identifying the parameter regions 
associated with stable attractors, we can ensure that the training process remains 
stable and convergent. 

Consider a transformer model where the training dynamics are influenced by 
a set of hyperparameters .μ = (μ1, μ2, . . . , μm). The phase space of the model’s 
parameters . θ evolves according to
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. 
dθ

dt
= −∇θL(θ, μ).

A bifurcation occurs when a critical value.μc is reached, causing a sudden change 
in the nature of the fixed points or attractors in the phase space. The system may 
transition from a regime with a stable fixed point to one with a strange attractor, 
characterized by chaotic dynamics. 

In the context of neural networks, including transformers, the existence of a strange 
attractor can lead to highly irregular and sensitive learning dynamics, where small 
changes in the initialization or training data can lead to vastly different outcomes. By 
contrast, stable attractors ensure robust learning dynamics, where the model reliably 
converges to a good solution. 

Consider the phenomenon of mode collapse in GANs (Generative Adversarial 
Networks), which can be viewed as the model being trapped in a low-dimensional 
attractor within the phase space. Similarly, in transformers, certain configurations 
of hyperparameters might lead to attractors that cause the model to consistently 
underperform, suggesting the need for careful tuning and regularization. 

9.4 Convergence in Transformer Training 

The convergence of gradient descent algorithms during transformer training is crucial 
for ensuring that the model reaches a minimum of the loss function efficiently and 
effectively. Understanding the convergence properties, particularly the rates of con-
vergence and the impact of learning rates, allows us to optimize the training process, 
ensuring stability and accelerating progress toward an optimal solution. This section 
explores the mathematical foundations underlying these aspects of convergence in 
transformer training. 

9.4.1 Convergence of Gradient Descent 

Gradient descent is the foundational optimization algorithm used in training trans-
formers, where the model parameters are iteratively updated in the direction of the 
negative gradient of the loss function. The convergence of gradient descent depends 
on the nature of the loss function, the choice of learning rate, and the structure of the 
parameter space. 

Let .L(θ) be the loss function, where .θ ∈ R
n represents the model parameters. 

The gradient descent update rule is given by 

. θt+1 = θt − η∇θL(θt ),

where .η > 0 is the learning rate and . t denotes the iteration step.
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The objective is to ensure that the sequence .{θt } converges to a point .θ∗ where 
the gradient of the loss function vanishes: 

. ∇θL(θ∗) = 0.

Assume that the loss function .L(θ) is convex and differentiable, and that the 
gradient .∇θL(θ) is Lipschitz continuous with constant . L: 

. ‖∇θL(θ1) − ∇θL(θ2)‖ ≤ L‖θ1 − θ2‖ for all θ1, θ2 ∈ R
n.

Then, if the learning rate . η satisfies .0 < η < 2
L , the sequence .{θt } generated by 

gradient descent converges to a minimum. θ∗: 

. L(θt+1) ≤ L(θt ) − η

2
‖∇θL(θt )‖2.

This result guarantees that, under appropriate conditions, the gradient descent 
algorithm will reduce the loss function at each step, eventually converging to a 
minimum. 

In the training of a transformer model, if the loss function (e.g., cross-entropy) 
satisfies the convexity and Lipschitz continuity conditions, and if the learning rate is 
chosen within the prescribed bounds, gradient descent will reliably decrease the loss 
and lead to convergence. This ensures that the model parameters move closer to the 
optimal values with each iteration. 

Analyzing Convergence Rates 

The rate at which gradient descent converges to the minimum of the loss function is 
of paramount importance in practical applications. Convergence rates depend on the 
properties of the loss function and the choice of learning rate. 

The convergence rate of gradient descent can be classified as linear, sublinear, 
or superlinear, depending on how the loss function decreases over iterations. For 
strongly convex loss functions, the convergence rate is linear, meaning that the error 
decreases exponentially fast: 

. ‖θt − θ∗‖ ≤ C · ρ t ,

where .C > 0 is a constant and .0 < ρ < 1 is the convergence rate. 
For general convex functions, the convergence is typically sublinear, often of the 

form: 

.L(θt ) − L(θ∗) ≤ D√
t
,
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where .D > 0 is a constant. This indicates that the convergence slows down as the 
algorithm progresses. 

If the loss function .L(θ) is strongly convex with parameter .m > 0 and has 
a Lipschitz-continuous gradient with constant .L > 0, then the gradient descent 
algorithm with learning rate .η = 2

L+m has a linear convergence rate: 

. ‖θt − θ∗‖ ≤
(
1 − 2m

L + m

)t

‖θ0 − θ∗‖.

This result shows that the distance to the optimal parameters decreases exponen-
tially with each iteration, leading to fast convergence. 

In a transformer model, if the loss function is strongly convex (which may occur 
in simpler settings or with regularization), the parameters will converge linearly to 
the optimum. This rapid convergence is particularly beneficial in large-scale models 
where training time is a critical factor. 

Impact of Learning Rates 

The learning rate . η plays a crucial role in determining both the speed and stability 
of convergence in gradient descent. Too large a learning rate can cause divergence, 
while too small a learning rate can result in slow convergence. 

The choice of learning rate affects the step size of parameter updates. If the learning 
rate is too large, the updates can overshoot the minimum, causing oscillations or 
divergence. If the learning rate is too small, the updates become too conservative, 
leading to slow progress. 

For a given learning rate . η, the update rule is 

. θt+1 = θt − η∇θL(θt ).

The stability of this update can be analyzed by examining the Taylor expansion 
of the loss function around the minimum. θ∗: 

. L(θt ) ≈ L(θ∗) + 1

2
(θt − θ∗)�H(θt − θ∗),

where .H is the Hessian matrix of second derivatives. The condition for stability 
requires that the eigenvalues of the matrix .I − ηH lie within the unit circle, leading 
to the constraint on the learning rate: 

. 0 < η <
2

λmax
,

where .λmax is the largest eigenvalue of the Hessian matrix.
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For quadratic loss functions, the optimal learning rate .η∗ that minimizes the 
convergence time is given by 

. η∗ = 2

λmax + λmin
,

where.λmin is the smallest eigenvalue of the Hessian. This learning rate balances fast 
convergence with stability. 

In transformer training, adjusting the learning rate dynamically can lead to 
improved convergence. Techniques such as learning rate schedules or adaptive learn-
ing rates (e.g., Adam optimizer) are often used to optimize the learning process, 
ensuring that the model converges efficiently without the risk of divergence. 

9.4.2 Stability of Learned Representations 

In the context of transformers, stability refers to the consistency of the learned rep-
resentations across different layers of the model and under various perturbations, 
such as changes in input data or model parameters. Stable representations are desir-
able as they indicate that the model is robust to small changes, leading to better 
generalization and reliability. 

Empirical versus Theoretical Stability 

Empirical stability is observed through experiments and simulations, where the 
behavior of learned representations is analyzed under different conditions. Theoret-
ical stability, on the other hand, is derived from mathematical models and analyses 
that predict the conditions under which learned representations remain consistent 
and reliable. 

Let.h(l) denote the representation learned at layer. l of the transformer model. The 
stability of this representation can be quantified by measuring the sensitivity of . h(l)

to perturbations in the input or parameters: 

. �h(l) = ‖h(l)(θ + δθ) − h(l)(θ)‖,

where .δθ represents a small perturbation in the model parameters . θ . 
The stability of the representation .h(l) is characterized by the condition: 

. 
�h(l)

‖δθ‖ ≤ κ,

where .κ > 0 is a constant that bounds the sensitivity. A smaller value of . κ indicates 
higher stability.
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If the transformation from layer .l − 1 to layer . l in the transformer is Lipschitz 
continuous with constant. Ll , then the learned representation.h(l) is stable under small 
perturbations, with the stability bound given by 

. 
�h(l)

‖δθ‖ ≤ Ll‖h(l−1)‖,

where .h(l−1) is the representation from the previous layer. 
In practice, empirical studies might involve adding Gaussian noise to the input 

or parameters and observing how the learned representations change across layers. 
If the representations remain consistent despite these perturbations, the model is 
considered to have high empirical stability. The theoretical stability can be verified 
by ensuring that the transformations between layers satisfy the Lipschitz continuity 
condition. 

Stability Across Layers 

Stability across layers is crucial for ensuring that the learned representations do not 
degrade as the data passes through multiple layers of the transformer. Each layer in 
the transformer performs a linear or non-linear transformation that ideally preserves 
or enhances the relevant features of the input. 

Consider a transformer model with . L layers. The overall stability of the learned 
representation .h(L) at the final layer depends on the cumulative stability of each 
preceding layer. The total sensitivity to perturbations can be expressed as 

. �h(L) =
L∏

l=1

Ll‖h(0)‖,

where .h(0) is the input representation and .Ll is the Lipschitz constant for layer . l. 
If each layer. l in the transformer satisfies.Ll ≤ 1, the overall model exhibits stable 

representations, with the total sensitivity being bounded by 

. ‖h(L)‖ ≤ ‖h(0)‖.

This implies that the depth of the transformer does not amplify perturbations, 
leading to stable and reliable learned representations. 

In deep transformers, where the number of layers .L is large, ensuring that 
each layer has a Lipschitz constant .Ll ≤ 1 becomes crucial to prevent the model 
from becoming unstable. Techniques such as layer normalization and regulariza-
tion are often employed to maintain stability across layers, ensuring that the final 
representation retains the essential features of the input.
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Dynamical Systems in Practice 

Dynamical systems theory provides a framework for analyzing and simulating the 
training dynamics of transformer models. By viewing the training process as a dynam-
ical system, we can gain insights into the behavior of the model under different 
training regimes, leading to better optimization strategies and model design. 

Numerical Simulations 

Numerical simulations are used to study the behavior of dynamical systems in 
transformer training. These simulations involve discretizing the continuous train-
ing dynamics and iterating over time to observe the evolution of model parameters 
and learned representations. 

Consider the discrete time dynamical system representing the training process: 

. θt+1 = θt − η∇θL(θt ),

where. t represents the iteration step and. η is the learning rate. Numerical simulations 
involve iterating this update rule over a large number of steps to observe the trajectory 
of . θt in the parameter space. 

Under the conditions of convexity and Lipschitz continuity of the gradient, the 
numerical simulation of gradient descent converges to a minimum .θ∗ of the loss 
function, with the convergence rate determined by the learning rate . η. 

Simulations of transformer training might involve varying the learning rate, ini-
tialization, or other hyperparameters to observe their impact on convergence and sta-
bility. These simulations provide empirical insights that complement the theoretical 
analysis, helping to identify optimal training strategies. 

Applications in Real-World Scenarios 

Applying dynamical systems theory to real-world transformer training scenarios 
allows us to predict and control the behavior of the model under practical conditions. 
This includes adjusting hyperparameters, understanding the impact of training data 
variability, and ensuring robust generalization. 

In real-world applications, the dynamical system governing transformer training 
is often influenced by factors such as noise in the data, non-convexity of the loss 
function, and stochasticity in the optimization process. The practical stability of the 
model can be assessed by analyzing how these factors affect the trajectory of . θt and 
the resulting learned representations. 

If the dynamical system representing transformer training is robust to small per-
turbations in data and parameters, the model is likely to generalize well to unseen 
data. Formally, if .θt remains within a bounded region .B ⊂ R

n under perturbations, 
the learned representations will exhibit robustness.
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In a real-world scenario such as natural language processing, where the data 
may be noisy or incomplete, applying dynamical systems analysis helps in design-
ing models that maintain stability and performance despite these challenges. This 
could involve using regularization techniques, adaptive learning rates, or robust 
optimization methods. 
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